Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Inhibition of bromodomain extraterminal histone readers alleviates skin fibrosis in experimental models of scleroderma
Sirapa Vichaikul, … , Amr H. Sawalha, Pei-Suen Tsou
Sirapa Vichaikul, … , Amr H. Sawalha, Pei-Suen Tsou
Published March 29, 2022
Citation Information: JCI Insight. 2022;7(9):e150871. https://doi.org/10.1172/jci.insight.150871.
View: Text | PDF
Research Article

Inhibition of bromodomain extraterminal histone readers alleviates skin fibrosis in experimental models of scleroderma

  • Text
  • PDF
Abstract

Binding of the bromodomain and extraterminal domain proteins (BETs) to acetylated histone residues is critical for gene transcription. We sought to determine the antifibrotic efficacy and potential mechanisms of BET inhibition in systemic sclerosis (SSc). Blockade of BETs was done using a pan-BET inhibitor, JQ1; BRD2 inhibitor, BIC1; or BRD4 inhibitors AZD5153 or ARV825. BET inhibition, specifically BRD4 blockade, showed antifibrotic effects in an animal model of SSc and in patient-derived diffuse cutaneous SSc (dcSSc) fibroblasts. Transcriptome analysis of JQ1-treated dcSSc fibroblasts revealed differentially expressed genes related to extracellular matrix, cell cycle, and calcium (Ca2+) signaling. The antifibrotic effect of BRD4 inhibition was mediated at least in part by downregulation of Ca2+/calmodulin–dependent protein kinase II α and reduction of intracellular Ca2+ concentrations. On the basis of these results, we propose targeting Ca2+ pathways or BRD4 as potentially novel therapeutic approaches for progressive tissue fibrosis.

Authors

Sirapa Vichaikul, Mikel Gurrea-Rubio, M. Asif Amin, Phillip L. Campbell, Qi Wu, Megan N. Mattichak, William D. Brodie, Pamela J. Palisoc, Mustafa Ali, Sei Muraoka, Jeffrey H. Ruth, Ellen N. Model, Dallas M. Rohraff, Jonatan L. Hervoso, Yang Mao-Draayer, David A. Fox, Dinesh Khanna, Amr H. Sawalha, Pei-Suen Tsou

×

Usage data is cumulative from March 2022 through July 2022.

Usage JCI PMC
Text version 3,001 0
PDF 555 0
Figure 84 0
Supplemental data 81 0
Citation downloads 10 0
Totals 3,731 0
Total Views 3,731

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts