IgA nephropathy is caused by deposition of circulatory IgA1 in the kidney. Hypogalactosylated IgA1 has the propensity to form poly-IgA aggregates that are prone to deposition. Herein, we purified poly-IgA from the plasma of patients with IgA nephropathy and showed that the complex is susceptible to reducing conditions, suggesting intermolecular disulfide connections between IgA units. We sought to find the cysteine residue(s) that form intermolecular disulfide. Naturally assembled dimeric IgA, also known as secretory IgA, involves a J chain subunit connected with 2 IgA1 molecules via their penultimate cysteine-471 residue on a “tailpiece” segment of IgA heavy chain. It is plausible that, with the absence of J chain, the cysteine residue of mono-IgA1 might aberrantly form a disulfide bond in poly-IgA formation. Mutagenesis confirmed that cysteine-471 is capable of promoting IgA aggregation. These discoveries prompted us to test thiol-based drugs for stabilizing cysteine. Specifically, the cystine-reducing drug cysteamine used for treatment of cystinosis showed a remarkable potency in preventing self-aggregation of IgA. When administrated to rat and mouse models of IgA nephropathy, cysteamine significantly reduced glomerular IgA deposition. Collectively, our results reveal a potentially novel molecular mechanism for aberrant formation of IgA aggregates, to which the repurposed cystinosis drug cysteamine was efficacious in preventing renal IgA deposition.


Xinfang Xie, Li Gao, Pan Liu, Jicheng Lv, Wan-Hong Lu, Hong Zhang, Jing Jin


Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.