Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Simultaneous evaluation of antibodies that inhibit SARS-CoV-2 variants via multiplex assay
Ester Lopez, … , Wai-Hong Tham, Amy W. Chung
Ester Lopez, … , Wai-Hong Tham, Amy W. Chung
Published July 12, 2021
Citation Information: JCI Insight. 2021;6(16):e150012. https://doi.org/10.1172/jci.insight.150012.
View: Text | PDF
Resource and Technical Advance COVID-19

Simultaneous evaluation of antibodies that inhibit SARS-CoV-2 variants via multiplex assay

  • Text
  • PDF
Abstract

The SARS-CoV-2 receptor binding domain (RBD) is both the principal target of neutralizing antibodies and one of the most rapidly evolving domains, which can result in the emergence of immune escape mutations, limiting the effectiveness of vaccines and antibody therapeutics. To facilitate surveillance, we developed a rapid, high-throughput, multiplex assay able to assess the inhibitory response of antibodies to 24 RBD natural variants simultaneously. We demonstrate how this assay can be implemented as a rapid surrogate assay for functional cell-based serological methods to measure the SARS-CoV-2 neutralizing capacity of antibodies at the angiotensin-converting enzyme 2–RBD (ACE2-RBD) interface. We describe the enhanced affinity of RBD variants N439K, S477N, Q493L, S494P, and N501Y to the ACE2 receptor and demonstrate the ability of this assay to bridge a major gap for SARS-CoV-2 research, informing selection of complementary monoclonal antibody candidates and the rapid identification of immune escape to emerging RBD variants following vaccination or natural infection.

Authors

Ester Lopez, Ebene R. Haycroft, Amy Adair, Francesca L. Mordant, Matthew T. O’Neill, Phillip Pymm, Samuel J. Redmond, Wen Shi Lee, Nicholas A. Gherardin, Adam K. Wheatley, Jennifer A. Juno, Kevin J. Selva, Samantha K. Davis, Samantha L. Grimley, Leigh Harty, Damian F.J. Purcell, Kanta Subbarao, Dale I. Godfrey, Stephen J. Kent, Wai-Hong Tham, Amy W. Chung

×

Full Text PDF

Download PDF (1.43 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts