Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Simultaneous evaluation of antibodies that inhibit SARS-CoV-2 variants via multiplex assay
Ester Lopez, … , Wai-Hong Tham, Amy W. Chung
Ester Lopez, … , Wai-Hong Tham, Amy W. Chung
Published July 12, 2021
Citation Information: JCI Insight. 2021;6(16):e150012. https://doi.org/10.1172/jci.insight.150012.
View: Text | PDF
Resource and Technical Advance COVID-19

Simultaneous evaluation of antibodies that inhibit SARS-CoV-2 variants via multiplex assay

  • Text
  • PDF
Abstract

The SARS-CoV-2 receptor binding domain (RBD) is both the principal target of neutralizing antibodies and one of the most rapidly evolving domains, which can result in the emergence of immune escape mutations, limiting the effectiveness of vaccines and antibody therapeutics. To facilitate surveillance, we developed a rapid, high-throughput, multiplex assay able to assess the inhibitory response of antibodies to 24 RBD natural variants simultaneously. We demonstrate how this assay can be implemented as a rapid surrogate assay for functional cell-based serological methods to measure the SARS-CoV-2 neutralizing capacity of antibodies at the angiotensin-converting enzyme 2–RBD (ACE2-RBD) interface. We describe the enhanced affinity of RBD variants N439K, S477N, Q493L, S494P, and N501Y to the ACE2 receptor and demonstrate the ability of this assay to bridge a major gap for SARS-CoV-2 research, informing selection of complementary monoclonal antibody candidates and the rapid identification of immune escape to emerging RBD variants following vaccination or natural infection.

Authors

Ester Lopez, Ebene R. Haycroft, Amy Adair, Francesca L. Mordant, Matthew T. O’Neill, Phillip Pymm, Samuel J. Redmond, Wen Shi Lee, Nicholas A. Gherardin, Adam K. Wheatley, Jennifer A. Juno, Kevin J. Selva, Samantha K. Davis, Samantha L. Grimley, Leigh Harty, Damian F.J. Purcell, Kanta Subbarao, Dale I. Godfrey, Stephen J. Kent, Wai-Hong Tham, Amy W. Chung

×

Figure 5

Mapping mutations to the RBD that affect inhibition of ACE-RBD by polyclonal antibodies.

Options: View larger image (or click on image) Download as PowerPoint
Mapping mutations to the RBD that affect inhibition of ACE-RBD by polycl...
(A) Percentage ACE2-RBD inhibition of a panel of n = 20 convalescent samples (1 in 100 plasma dilution), demonstrating inhibition of RBD WT-ACE2 binding, mapped to the array of RBD variants in the multiplex assay. (B) Percentage ACE2 inhibition ratio to the WT for each subject to each RBD variant. (C) Percentage of subjects who were able to block (inhibition > 20%) binding to each RBD variant in the array. Data represent the mean of replicates. Blue bars highlight variants observed to demonstrate a high affinity to ACE2 via BLI and the multiplex assay.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts