Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Adipose triglyceride lipase–mediated lipid catabolism is essential for bronchiolar regeneration
Manu Manjunath Kanti, … , Gerald Hoefler, Paul Willibald Vesely
Manu Manjunath Kanti, … , Gerald Hoefler, Paul Willibald Vesely
Published March 29, 2022
Citation Information: JCI Insight. 2022;7(9):e149438. https://doi.org/10.1172/jci.insight.149438.
View: Text | PDF
Research Article Metabolism Pulmonology

Adipose triglyceride lipase–mediated lipid catabolism is essential for bronchiolar regeneration

  • Text
  • PDF
Abstract

The lung airways are constantly exposed to inhaled toxic substances, resulting in cellular damage that is repaired by local expansion of resident bronchiolar epithelial club cells. Disturbed bronchiolar epithelial damage repair lies at the core of many prevalent lung diseases, including chronic obstructive pulmonary disease, asthma, pulmonary fibrosis, and lung cancer. However, it is still not known how bronchiolar club cell energy metabolism contributes to this process. Here, we show that adipose triglyceride lipase (ATGL), the rate-limiting enzyme for intracellular lipolysis, is critical for normal club cell function in mice. Deletion of the gene encoding ATGL, Pnpla2 (also known as Atgl), induced substantial triglyceride accumulation, decreased mitochondrial numbers, and decreased mitochondrial respiration in club cells. This defect manifested as bronchiolar epithelial thickening and increased airway resistance under baseline conditions. After naphthalene‑induced epithelial denudation, a regenerative defect was apparent. Mechanistically, dysfunctional PPARα lipid-signaling underlies this phenotype because (a) ATGL was needed for PPARα lipid-signaling in regenerating bronchioles and (b) administration of the specific PPARα agonist WY14643 restored normal bronchiolar club cell ultrastructure and regenerative potential. Our data emphasize the importance of the cellular energy metabolism for lung epithelial regeneration and highlight the significance of ATGL-mediated lipid catabolism for lung health.

Authors

Manu Manjunath Kanti, Isabelle Striessnig-Bina, Beatrix Irene Wieser, Silvia Schauer, Gerd Leitinger, Thomas O. Eichmann, Martina Schweiger, Margit Winkler, Elke Winter, Andrea Lana, Iris Kufferath, Leigh Matthew Marsh, Grazyna Kwapiszewska, Rudolf Zechner, Gerald Hoefler, Paul Willibald Vesely

×
Options: View larger image (or click on image) Download as PowerPoint
Specific triglyceride accumulation in the lungs of Atgl-KO/cTg mice

Specific triglyceride accumulation in the lungs of Atgl-KO/cTg mice


Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts