Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Distinctive waves of innate immune response in the retina in experimental autoimmune encephalomyelitis
Andrés Cruz-Herranz, … , Sergio E. Baranzini, Ari J. Green
Andrés Cruz-Herranz, … , Sergio E. Baranzini, Ari J. Green
Published June 8, 2021
Citation Information: JCI Insight. 2021;6(11):e149228. https://doi.org/10.1172/jci.insight.149228.
View: Text | PDF
Resource and Technical Advance Neuroscience Article has an altmetric score of 3

Distinctive waves of innate immune response in the retina in experimental autoimmune encephalomyelitis

  • Text
  • PDF
Abstract

Neurodegeneration mediates neurological disability in inflammatory demyelinating diseases of the CNS. The role of innate immune cells in mediating this damage has remained controversial with evidence for destructive and protective effects. This has complicated efforts to develop treatment. The time sequence and dynamic evolution of the opposing functions are especially unclear. Given limits of in vivo monitoring in human diseases such as multiple sclerosis (MS), animal models are warranted to investigate the association and timing of innate immune activation with neurodegeneration. Using noninvasive in vivo retinal imaging of experimental autoimmune encephalitis (EAE) in CX3CR1GFP/+–knock-in mice followed by transcriptional profiling, we are able to show 2 distinct waves separated by a marked reduction in the number of innate immune cells and change in cell morphology. The first wave is characterized by an inflammatory phagocytic phenotype preceding the onset of EAE, whereas the second wave is characterized by a regulatory, antiinflammatory phenotype during the chronic stage. Additionally, the magnitude of the first wave is associated with neuronal loss. Two transcripts identified — growth arrest–specific protein 6 (GAS6) and suppressor of cytokine signaling 3 (SOCS3) — might be promising targets for enhancing protective effects of microglia in the chronic phase after initial injury.

Authors

Andrés Cruz-Herranz, Frederike C. Oertel, Kicheol Kim, Ester Cantó, Garrett Timmons, Jung H. Sin, Michael Devereux, Nicholas Baker, Brady Michel, Ryan D. Schubert, Lakshmisahithi Rani, Christian Cordano, Sergio E. Baranzini, Ari J. Green

×
Options: View larger image (or click on image) Download as PowerPoint
Cell type and microglia subset fractions during the course of EAE

Cell type and microglia subset fractions during the course of EAE


Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts

Posted by 6 X users
21 readers on Mendeley
See more details