Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

Mesenchymal stromal cells reduce evidence of lung injury in patients with ARDS
Katherine D. Wick, … , Lorraine B. Ware, Michael A. Matthay
Katherine D. Wick, … , Lorraine B. Ware, Michael A. Matthay
Published May 11, 2021
Citation Information: JCI Insight. 2021;6(12):e148983. https://doi.org/10.1172/jci.insight.148983.
View: Text | PDF
Clinical Medicine Pulmonology Stem cells

Mesenchymal stromal cells reduce evidence of lung injury in patients with ARDS

  • Text
  • PDF
Abstract

BACKGROUND Whether airspace biomarkers add value to plasma biomarkers in studying acute respiratory distress syndrome (ARDS) is not well understood. Mesenchymal stromal cells (MSCs) are an investigational therapy for ARDS, and airspace biomarkers may provide mechanistic evidence for MSCs’ impact in patients with ARDS.METHODS We carried out a nested cohort study within a phase 2a safety trial of treatment with allogeneic MSCs for moderate-to-severe ARDS. Nonbronchoscopic bronchoalveolar lavage and plasma samples were collected 48 hours after study drug infusion. Airspace and plasma biomarker concentrations were compared between the MSC (n = 17) and placebo (n = 10) treatment arms, and correlation between the two compartments was tested. Airspace biomarkers were also tested for associations with clinical and radiographic outcomes.RESULTS Compared with placebo, MSC treatment significantly reduced airspace total protein, angiopoietin-2 (Ang-2), IL-6, and soluble TNF receptor-1 concentrations. Plasma biomarkers did not differ between groups. Each 10-fold increase in airspace Ang-2 was independently associated with 6.7 fewer days alive and free of mechanical ventilation (95% CI, –12.3 to –1.0, P = 0.023), and each 10-fold increase in airspace receptor for advanced glycation end-products (RAGE) was independently associated with a 6.6-point increase in day 3 radiographic assessment of lung edema score (95% CI, 2.4 to 10.8, P = 0.004).CONCLUSION MSCs reduced biological evidence of lung injury in patients with ARDS. Biomarkers from the airspaces provide additional value for studying pathogenesis, treatment effects, and outcomes in ARDS.TRIAL REGISTRATION ClinicalTrials.gov NCT02097641.FUNDING National Heart, Lung, and Blood Institute.

Authors

Katherine D. Wick, Aleksandra Leligdowicz, Hanjing Zhuo, Lorraine B. Ware, Michael A. Matthay

×

Loading citation information...
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts