Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Adipocyte-like signature in ovarian cancer minimal residual disease identifies metabolic vulnerabilities of tumor-initiating cells
Mara Artibani, Kenta Masuda, Zhiyuan Hu, Pascal C. Rauher, Garry Mallett, Nina Wietek, Matteo Morotti, Kay Chong, Mohammad KaramiNejadRanjbar, Christos E. Zois, Sunanda Dhar, Salma El-Sahhar, Leticia Campo, Sarah P. Blagden, Stephen Damato, Pubudu N. Pathiraja, Shibani Nicum, Fergus Gleeson, Alexandros Laios, Abdulkhaliq Alsaadi, Laura Santana Gonzalez, Takeshi Motohara, Ashwag Albukhari, Zhen Lu, Robert C. Bast Jr., Adrian L. Harris, Christer S. Ejsing, Robin W. Klemm, Christopher Yau, Tatjana Sauka-Spengler, Ahmed Ashour Ahmed
Mara Artibani, Kenta Masuda, Zhiyuan Hu, Pascal C. Rauher, Garry Mallett, Nina Wietek, Matteo Morotti, Kay Chong, Mohammad KaramiNejadRanjbar, Christos E. Zois, Sunanda Dhar, Salma El-Sahhar, Leticia Campo, Sarah P. Blagden, Stephen Damato, Pubudu N. Pathiraja, Shibani Nicum, Fergus Gleeson, Alexandros Laios, Abdulkhaliq Alsaadi, Laura Santana Gonzalez, Takeshi Motohara, Ashwag Albukhari, Zhen Lu, Robert C. Bast Jr., Adrian L. Harris, Christer S. Ejsing, Robin W. Klemm, Christopher Yau, Tatjana Sauka-Spengler, Ahmed Ashour Ahmed
View: Text | PDF
Research Article Oncology

Adipocyte-like signature in ovarian cancer minimal residual disease identifies metabolic vulnerabilities of tumor-initiating cells

  • Text
  • PDF
Abstract

Similar to tumor-initiating cells (TICs), minimal residual disease (MRD) is capable of reinitiating tumors and causing recurrence. However, the molecular characteristics of solid tumor MRD cells and drivers of their survival have remained elusive. Here we performed dense multiregion transcriptomics analysis of paired biopsies from 17 ovarian cancer patients before and after chemotherapy. We reveal that while MRD cells share important molecular signatures with TICs, they are also characterized by an adipocyte-like gene expression signature and a portion of them had undergone epithelial-mesenchymal transition (EMT). In a cell culture MRD model, MRD-mimic cells showed the same phenotype and were dependent on fatty acid oxidation (FAO) for survival and resistance to cytotoxic agents. These findings identify EMT and FAO as attractive targets to eradicate MRD in ovarian cancer and make a compelling case for the further testing of FAO inhibitors in treating MRD.

Authors

Mara Artibani, Kenta Masuda, Zhiyuan Hu, Pascal C. Rauher, Garry Mallett, Nina Wietek, Matteo Morotti, Kay Chong, Mohammad KaramiNejadRanjbar, Christos E. Zois, Sunanda Dhar, Salma El-Sahhar, Leticia Campo, Sarah P. Blagden, Stephen Damato, Pubudu N. Pathiraja, Shibani Nicum, Fergus Gleeson, Alexandros Laios, Abdulkhaliq Alsaadi, Laura Santana Gonzalez, Takeshi Motohara, Ashwag Albukhari, Zhen Lu, Robert C. Bast Jr., Adrian L. Harris, Christer S. Ejsing, Robin W. Klemm, Christopher Yau, Tatjana Sauka-Spengler, Ahmed Ashour Ahmed

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 856 290
PDF 210 50
Figure 372 3
Supplemental data 266 58
Citation downloads 158 0
Totals 1,862 401
Total Views 2,263
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts