Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Resistance to androgen receptor signaling inhibition does not necessitate development of neuroendocrine prostate cancer
W. Nathaniel Brennen, Yezi Zhu, Ilsa M. Coleman, Susan L. Dalrymple, Lizamma Antony, Radhika A. Patel, Brian Hanratty, Roshan Chikarmane, Alan K. Meeker, S. Lilly Zheng, Jody E. Hooper, Jun Luo, Angelo M. De Marzo, Eva Corey, Jianfeng Xu, Srinivasan Yegnasubramanian, Michael C. Haffner, Peter S. Nelson, William G. Nelson, William B. Isaacs, John T. Isaacs
W. Nathaniel Brennen, Yezi Zhu, Ilsa M. Coleman, Susan L. Dalrymple, Lizamma Antony, Radhika A. Patel, Brian Hanratty, Roshan Chikarmane, Alan K. Meeker, S. Lilly Zheng, Jody E. Hooper, Jun Luo, Angelo M. De Marzo, Eva Corey, Jianfeng Xu, Srinivasan Yegnasubramanian, Michael C. Haffner, Peter S. Nelson, William G. Nelson, William B. Isaacs, John T. Isaacs
View: Text | PDF
Research Article Oncology

Resistance to androgen receptor signaling inhibition does not necessitate development of neuroendocrine prostate cancer

  • Text
  • PDF
Abstract

Resistance to AR signaling inhibitors (ARSis) in a subset of metastatic castration-resistant prostate cancers (mCRPCs) occurs with the emergence of AR– neuroendocrine prostate cancer (NEPC) coupled with mutations/deletions in PTEN, TP53, and RB1 and the overexpression of DNMTs, EZH2, and/or SOX2. To resolve whether the lack of AR is the driving factor for the emergence of the NE phenotype, molecular, cell, and tumor biology analyses were performed on 23 xenografts derived from patients with PC, recapitulating the full spectrum of genetic alterations proposed to drive NE differentiation. Additionally, phenotypic response to CRISPR/Cas9-mediated AR KO in AR+ CRPC cells was evaluated. These analyses document that (a) ARSi-resistant NEPC developed without androgen deprivation treatment; (b) ARS in ARSi-resistant AR+/NE+ double-positive “amphicrine” mCRPCs did not suppress NE differentiation; (c) the lack of AR expression did not necessitate acquiring a NE phenotype, despite concomitant mutations/deletions in PTEN and TP53, and the loss of RB1 but occurred via emergence of an AR–/NE– double-negative PC (DNPC); (d) despite DNPC cells having homogeneous genetic driver mutations, they were phenotypically heterogeneous, expressing basal lineage markers alone or in combination with luminal lineage markers; and (e) AR loss was associated with AR promoter hypermethylation in NEPCs but not in DNPCs.

Authors

W. Nathaniel Brennen, Yezi Zhu, Ilsa M. Coleman, Susan L. Dalrymple, Lizamma Antony, Radhika A. Patel, Brian Hanratty, Roshan Chikarmane, Alan K. Meeker, S. Lilly Zheng, Jody E. Hooper, Jun Luo, Angelo M. De Marzo, Eva Corey, Jianfeng Xu, Srinivasan Yegnasubramanian, Michael C. Haffner, Peter S. Nelson, William G. Nelson, William B. Isaacs, John T. Isaacs

×

Figure 3

Gene expression in lethal mCRPC PDXs and amphicrine phenotype in LvCaP-2R.

Options: View larger image (or click on image) Download as PowerPoint
Gene expression in lethal mCRPC PDXs and amphicrine phenotype in LvCaP-2...
Lethal mCRPC PDXs analyzed for RNA expression of (A) select genes and (B) NE-associated genes. (C–E) IHC step-section of LvCaP-2R PDX stained for (C) AR (original magnification, ×200), (D) SYP (original magnification, ×200), and (E) dual staining (original magnification, ×400) for AR (pink) and SYP (brown), documenting the coexpression of both markers in the same cell (i.e., amphicrine). (F) RNA-Seq analysis for AR-regulated genes in a panel of PDXs representing different phenotypes (e.g., DN, ARPC, amphicrine, and NE). mCRPC, metastatic castration-resistant prostate cancer; NE, neuroendocrine; PDXs, patient-derived xenografts; SYP, synaptophysin; DN, double-negative.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts