Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Recently published
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact

Usage Information

IGF1R controls mechanosignaling in myofibroblasts required for pulmonary alveologenesis
Hua He, … , Cheng-Lun Na, Jeffrey A. Whitsett
Hua He, … , Cheng-Lun Na, Jeffrey A. Whitsett
Published February 16, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.144863.
View: Text | PDF
Research In-Press Preview Pulmonology

IGF1R controls mechanosignaling in myofibroblasts required for pulmonary alveologenesis

  • Text
  • PDF
Abstract

Ventilation throughout life is dependent upon the formation of pulmonary alveoli which create an extensive surface area wherein the close apposition of respiratory epithelium and endothelial cells of the pulmonary microvascular enables efficient gas exchange. Morphogenesis of the alveoli initiates at late gestation in humans and the early postnatal period in the mouse. Alveolar septation are directed by complex signaling interactions among multiple cell types. Herein, we demonstrate that the expression of insulin-like growth factor 1 receptor (Igf1r) by a subset of pulmonary fibroblasts is required for normal alveologenesis in mice. Postnatal deletion of Igf1r caused alveolar simplification, disrupting alveolar elastin networks and extracellular matrix without altering myofibroblast differentiation or proliferation. Loss of Igf1r impaired contractile properties of lung myofibroblasts, inhibited myosin light chain (MLC) phosphorylation and mechanotransductive nuclear YAP activity. Activation of p-AKT, p-MLC and nuclear YAP in myofibroblasts was dependent on Igf1r. Pharmacologic activation of AKT enhanced MLC phosphorylation, increased YAP activation and ameliorated alveolar simplification in vivo. IGF1R controls mechanosignaling in myofibroblasts required for lung alveologenesis.

Authors

Hua He, John Snowball, Fei Sun, Cheng-Lun Na, Jeffrey A. Whitsett

×

Usage data is cumulative from February 2021 through March 2021.

Usage JCI PMC
Text version 169 0
PDF 75 0
Supplemental data 20 0
Citation downloads 9 0
Totals 273 0
Total Views 273

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement
Follow JCI Insight:
Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts