Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
A longitudinal and transancestral analysis of DNA methylation patterns and disease activity in lupus patients
Patrick Coit, … , Kathleen Maksimowicz-McKinnon, Amr H. Sawalha
Patrick Coit, … , Kathleen Maksimowicz-McKinnon, Amr H. Sawalha
Published October 27, 2020
Citation Information: JCI Insight. 2020;5(22):e143654. https://doi.org/10.1172/jci.insight.143654.
View: Text | PDF
Research Article

A longitudinal and transancestral analysis of DNA methylation patterns and disease activity in lupus patients

  • Text
  • PDF
Abstract

Epigenetic dysregulation is implicated in the pathogenesis of lupus. We performed a longitudinal analysis to assess changes in DNA methylation in lupus neutrophils over 4 years of follow-up and across disease activity levels using 229 patient samples. We demonstrate that DNA methylation profiles in lupus are partly determined by ancestry-associated genetic variations and are highly stable over time. DNA methylation levels in 2 CpG sites correlated significantly with changes in lupus disease activity. Progressive demethylation in SNX18 was observed with increasing disease activity in African American patients. Importantly, demethylation of a CpG site located within GALNT18 was associated with the development of active lupus nephritis. Differentially methylated genes between African American and European American lupus patients include type I IFN–response genes such as IRF7 and IFI44, and genes related to the NF-κB pathway. TREML4, which plays a vital role in TLR signaling, was hypomethylated in African American patients and demonstrated a strong cis–methylation quantitative trait loci (cis-meQTL) effect among 8855 cis-meQTL associations identified in our study.

Authors

Patrick Coit, Lourdes Ortiz-Fernandez, Emily E. Lewis, W. Joseph McCune, Kathleen Maksimowicz-McKinnon, Amr H. Sawalha

×

Figure 3

cis-meQTL analysis in lupus neutrophils.

Options: View larger image (or click on image) Download as PowerPoint

cis-meQTL analysis in lupus neutrophils.
(A) A Manhattan plot showing C...
(A) A Manhattan plot showing CpG sites (black and gray dots) in cis-meQTL pairs identified in our lupus cohort. Black dots represent CpG sites in non–CpG-SNP cis-meQTL pairs that had a significantly different average methylation between African American and European American patients (FDR-adjusted P < 0.05). The red dashed line represents an approximate FDR-adjusted P value threshold of 0.05 for all cis-meQTL across the entire genome. An meQTL involving TREML4 was among the most significant meQTL effects detected. (B) Enrichment of gene ontologies and pathways among annotated genes associated with CpG sites with cis-meQTL effects in lupus neutrophils. Barcharts show the most significant molecular function (orange) and biological process (green) gene ontology terms, and KEGG pathways (purple) by –log10 (P value). All terms have an FDR-adjusted P < 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts