Autoimmune disease has presented an insurmountable barrier to restoration of durable immune tolerance. Previous studies indicate that chronic therapy with metabolic inhibitors can reduce autoimmune inflammation, but it remains unknown whether acute metabolic modulation enables permanent immune tolerance to be established. In an animal model of lupus, we determined that targeting glucose metabolism with 2-deoxyglucose (2DG) and mitochondrial metabolism with metformin enables endogenous immune tolerance mechanisms to respond to tolerance induction. A 2-week course of 2DG and metformin, when combined with tolerance-inducing therapy anti-CD45RB, prevented renal deposition of autoantibodies for 6 months after initial treatment and restored tolerance induction to allografts in lupus-prone mice. The restoration of durable immune tolerance was linked to changes in T cell surface glycosylation patterns, illustrating a role for glycoregulation in immune tolerance. These findings indicate that metabolic therapy may be applied as a powerful preconditioning to reinvigorate tolerance mechanisms in autoimmune and transplant settings that resist current immune therapies.
Christopher S. Wilson, Blair T. Stocks, Emilee M. Hoopes, Jillian P. Rhoads, Kelsey L. McNew, Amy S. Major, Daniel J. Moore
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 474 | 117 |
69 | 40 | |
Figure | 185 | 0 |
Supplemental data | 31 | 0 |
Citation downloads | 57 | 0 |
Totals | 816 | 157 |
Total Views | 973 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.