The programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway is a potent inhibitory pathway involved in immune regulation and is a potential therapeutic target in transplantation. In this study, we show that overexpression of PD-1 on T cells (PD-1 Tg) promotes allograft tolerance in a fully MHC-mismatched cardiac transplant model when combined with costimulation blockade with CTLA-4–Ig. PD-1 overexpression on T cells also protected against chronic rejection in a single MHC II–mismatched cardiac transplant model, whereas the overexpression still allowed the generation of an effective immune response against an influenza A virus. Notably, Tregs from PD-1 Tg mice were required for tolerance induction and presented greater ICOS expression than those from WT mice. The survival benefit of PD-1 Tg recipients required ICOS signaling and donor PD-L1 expression. These results indicate that modulation of PD-1 expression, in combination with a costimulation blockade, is a promising therapeutic target to promote transplant tolerance.
Thiago J. Borges, Naoka Murakami, Isadora T. Lape, Rodrigo B. Gassen, Kaifeng Liu, Songjie Cai, Joe Daccache, Kassem Safa, Tetsunosuke Shimizu, Shunsuke Ohori, Alison M. Paterson, Paolo Cravedi, Jamil Azzi, Peter T. Sage, Arlene H. Sharpe, Xian C. Li, Leonardo V. Riella
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 654 | 472 |
92 | 96 | |
Figure | 113 | 0 |
Supplemental data | 27 | 6 |
Citation downloads | 57 | 0 |
Totals | 943 | 574 |
Total Views | 1,517 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.