Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Medicine
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Medicine
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

ECSIT is a critical limiting factor for cardiac function
Linan Xu, … , David J. Grieve, Paul N. Moynagh
Linan Xu, … , David J. Grieve, Paul N. Moynagh
Published May 25, 2021
Citation Information: JCI Insight. 2021;6(12):e142801. https://doi.org/10.1172/jci.insight.142801.
View: Text | PDF
Research Article Cardiology Metabolism

ECSIT is a critical limiting factor for cardiac function

  • Text
  • PDF
Abstract

Evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) is a protein with roles in early development, activation of the transcription factor NF-κB, and production of mitochondrial reactive oxygen species (mROS) that facilitates clearance of intracellular bacteria like Salmonella. ECSIT is also an important assembly factor for mitochondrial complex I. Unlike the murine form of Ecsit (mEcsit), we demonstrate here that human ECSIT (hECSIT) is highly labile. To explore whether the instability of hECSIT affects functions previously ascribed to its murine counterpart, we created a potentially novel transgenic mouse in which the murine Ecsit gene is replaced by the human ECSIT gene. The humanized mouse has low levels of hECSIT protein, in keeping with its intrinsic instability. Whereas low-level expression of hECSIT was capable of fully compensating for mEcsit in its roles in early development and activation of the NF-κB pathway, macrophages from humanized mice showed impaired clearance of Salmonella that was associated with reduced production of mROS. Notably, severe cardiac hypertrophy was manifested in aging humanized mice, leading to premature death. The cellular and molecular basis of this phenotype was delineated by showing that low levels of human ECSIT protein led to a marked reduction in assembly and activity of mitochondrial complex I with impaired oxidative phosphorylation and reduced production of ATP. Cardiac tissue from humanized hECSIT mice also showed reduced mitochondrial fusion and more fission but impaired clearance of fragmented mitochondria. A cardiomyocyte-intrinsic role for Ecsit in mitochondrial function and cardioprotection is also demonstrated. We also show that cardiac fibrosis and damage in humans correlated with low expression of human ECSIT. In summary, our findings identify a role for ECSIT in cardioprotection, while generating a valuable experimental model to study mitochondrial dysfunction and cardiac pathophysiology.

Authors

Linan Xu, Fiachra Humphries, Nezira Delagic, Bingwei Wang, Ashling Holland, Kevin S. Edgar, Jose R. Hombrebueno, Donna Beer Stolz, Ewa Oleszycka, Aoife M. Rodgers, Nadezhda Glezeva, Kenneth McDonald, Chris J. Watson, Mark T. Ledwidge, Rebecca J. Ingram, David J. Grieve, Paul N. Moynagh

×

Usage data is cumulative from December 2023 through December 2024.

Usage JCI PMC
Text version 540 177
PDF 115 66
Figure 221 2
Supplemental data 54 5
Citation downloads 41 0
Totals 971 250
Total Views 1,221

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2024 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts