Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
WNK1 regulates uterine homeostasis and its ability to support pregnancy
Ru-pin Alicia Chi, Tianyuan Wang, Chou-Long Huang, San-pin Wu, Steven L. Young, John P. Lydon, Francesco J. DeMayo
Ru-pin Alicia Chi, Tianyuan Wang, Chou-Long Huang, San-pin Wu, Steven L. Young, John P. Lydon, Francesco J. DeMayo
View: Text | PDF
Research Article Reproductive biology

WNK1 regulates uterine homeostasis and its ability to support pregnancy

  • Text
  • PDF
Abstract

WNK1 (with no lysine [K] kinase 1) is an atypical kinase protein ubiquitously expressed in humans and mice. A mutation in its encoding gene causes hypertension in humans, which is associated with abnormal ion homeostasis. WNK1 is critical for in vitro decidualization in human endometrial stromal cells, thereby demonstrating its importance in female reproduction. Using a mouse model, WNK1 was ablated in the female reproductive tract to define its in vivo role in uterine biology. Loss of WNK1 altered uterine morphology, causing endometrial epithelial hyperplasia, adenomyotic features, and a delay in embryo implantation, ultimately resulting in compromised fertility. Combining transcriptomic, proteomic, and interactomic analyses revealed a potentially novel regulatory pathway whereby WNK1 represses AKT phosphorylation through protein phosphatase 2A (PP2A) in endometrial cells from both humans and mice. We show that WNK1 interacted with PPP2R1A, the alpha isoform of the PP2A scaffold subunit. This maintained the levels of PP2A subunits and stabilized its activity, which then dephosphorylated AKT. Therefore, loss of WNK1 reduced PP2A activity, causing AKT hypersignaling. Using FOXO1 as a readout of AKT activity, we demonstrate that there was escalated FOXO1 phosphorylation and nuclear exclusion, leading to a disruption in the expression of genes that are crucial for embryo implantation.

Authors

Ru-pin Alicia Chi, Tianyuan Wang, Chou-Long Huang, San-pin Wu, Steven L. Young, John P. Lydon, Francesco J. DeMayo

×

Figure 1

WNK1 was expressed in all compartments of the uterus during the window of implantation in both humans and mice.

Options: View larger image (or click on image) Download as PowerPoint
WNK1 was expressed in all compartments of the uterus during the window o...
(A and B) IHC staining of WNK1 in proliferative and midsecretory phased endometrial tissues from fertile women (A), and during receptive GD 4.5 and after implantation/decidualizing phase GD 5.5 in the uterus of WT mice, with the colored squares indicating positions of enlarged areas (B). Scale bars: 100 μm. G, glandular epithelium; S, stroma; L, luminal epithelium.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts