Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Immunoglobulin A nephropathy is characterized by anticommensal humoral immune responses
Elissa G. Currie, Bryan Coburn, Elisa A. Porfilio, Ping Lam, Olga L. Rojas, Jan Novak, Stuart Yang, Raad B. Chowdhury, Lesley A. Ward, Pauline W. Wang, Khashayar Khaleghi, James An, Sarah Q. Crome, Michelle A. Hladunewich, Sean J. Barbour, Daniel C. Cattran, Rulan S. Parekh, Christoph Licht, Rohan John, Rupert Kaul, Kenneth Croitoru, Scott D. Gray-Owen, David S. Guttman, Jennifer L. Gommerman, Heather N. Reich
Elissa G. Currie, Bryan Coburn, Elisa A. Porfilio, Ping Lam, Olga L. Rojas, Jan Novak, Stuart Yang, Raad B. Chowdhury, Lesley A. Ward, Pauline W. Wang, Khashayar Khaleghi, James An, Sarah Q. Crome, Michelle A. Hladunewich, Sean J. Barbour, Daniel C. Cattran, Rulan S. Parekh, Christoph Licht, Rohan John, Rupert Kaul, Kenneth Croitoru, Scott D. Gray-Owen, David S. Guttman, Jennifer L. Gommerman, Heather N. Reich
View: Text | PDF
Research Article Immunology Nephrology

Immunoglobulin A nephropathy is characterized by anticommensal humoral immune responses

  • Text
  • PDF
Abstract

IgA nephropathy (IgAN) is a leading cause of kidney failure, yet little is known about the immunopathogenesis of this disease. IgAN is characterized by deposition of IgA in the kidney glomeruli, but the source and stimulus for IgA production are not known. Clinical and experimental data suggest a role for aberrant immune responses to mucosal microbiota in IgAN, and in some countries with high disease prevalence, tonsillectomy is regarded as standard-of-care therapy. To evaluate the relationship between microbiota and mucosal immune responses, we characterized the tonsil microbiota in patients with IgAN versus nonrelated household-matched control group participants and identified increased carriage of the genus Neisseria and elevated Neisseria-targeted serum IgA in IgAN patients. We reverse-translated these findings in experimental IgAN driven by BAFF overexpression in BAFF-transgenic mice rendered susceptible to Neisseria infection by introduction of a humanized CEACAM-1 transgene (B × hC-Tg). Colonization of B × hC-Tg mice with Neisseria yielded augmented levels of systemic Neisseria-specific IgA. Using a custom ELISPOT assay, we discovered anti-Neisseria–specific IgA-secreting cells within the kidneys of these mice. These findings suggest a role for cytokine-driven aberrant mucosal immune responses to oropharyngeal pathobionts, such as Neisseria, in the immunopathogenesis of IgAN. Furthermore, in the presence of excess BAFF, pathobiont-specific IgA can be produced in situ within the kidney.

Authors

Elissa G. Currie, Bryan Coburn, Elisa A. Porfilio, Ping Lam, Olga L. Rojas, Jan Novak, Stuart Yang, Raad B. Chowdhury, Lesley A. Ward, Pauline W. Wang, Khashayar Khaleghi, James An, Sarah Q. Crome, Michelle A. Hladunewich, Sean J. Barbour, Daniel C. Cattran, Rulan S. Parekh, Christoph Licht, Rohan John, Rupert Kaul, Kenneth Croitoru, Scott D. Gray-Owen, David S. Guttman, Jennifer L. Gommerman, Heather N. Reich

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 937 199
PDF 163 71
Figure 189 4
Table 34 0
Supplemental data 59 4
Citation downloads 108 0
Totals 1,490 278
Total Views 1,768

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts