Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Atrial AMP-activated protein kinase is critical for prevention of dysregulation of electrical excitability and atrial fibrillation
Kevin N. Su, Yina Ma, Marine Cacheux, Zeki Ilkan, Nour Raad, Grace K. Muller, Xiaohong Wu, Nicole Guerrera, Stephanie L. Thorn, Albert J. Sinusas, Marc Foretz, Benoit Viollet, Joseph G. Akar, Fadi G. Akar, Lawrence H. Young
Kevin N. Su, Yina Ma, Marine Cacheux, Zeki Ilkan, Nour Raad, Grace K. Muller, Xiaohong Wu, Nicole Guerrera, Stephanie L. Thorn, Albert J. Sinusas, Marc Foretz, Benoit Viollet, Joseph G. Akar, Fadi G. Akar, Lawrence H. Young
View: Text | PDF
Research Article Cardiology

Atrial AMP-activated protein kinase is critical for prevention of dysregulation of electrical excitability and atrial fibrillation

  • Text
  • PDF
Abstract

Metabolic stress is an important cause of pathological atrial remodeling and atrial fibrillation. AMPK is a ubiquitous master metabolic regulator, yet its biological function in the atria is poorly understood in both health and disease. We investigated the impact of atrium-selective cardiac AMPK deletion on electrophysiological and structural remodeling in mice. Loss of atrial AMPK expression caused atrial changes in electrophysiological properties and atrial ectopic activity prior to the onset of spontaneous atrial fibrillation. Concomitant transcriptional downregulation of connexins and atrial ion channel subunits manifested with delayed left atrial activation and repolarization. The early molecular and electrophysiological abnormalities preceded left atrial structural remodeling and interstitial fibrosis. AMPK inactivation induced downregulation of transcription factors (Mef2c and Pitx2c) linked to connexin and ion channel transcriptional reprogramming. Thus, AMPK plays an essential homeostatic role in atria, protecting against adverse remodeling potentially by regulating key transcription factors that control the expression of atrial ion channels and gap junction proteins.

Authors

Kevin N. Su, Yina Ma, Marine Cacheux, Zeki Ilkan, Nour Raad, Grace K. Muller, Xiaohong Wu, Nicole Guerrera, Stephanie L. Thorn, Albert J. Sinusas, Marc Foretz, Benoit Viollet, Joseph G. Akar, Fadi G. Akar, Lawrence H. Young

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 579 198
PDF 138 35
Figure 332 0
Supplemental data 112 6
Citation downloads 125 0
Totals 1,286 239
Total Views 1,525

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts