Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Cardiac fibroblast proliferation rates and collagen expression mature early and are unaltered with advancing age
Rimao Wu, Feiyang Ma, Anela Tosevska, Colin Farrell, Matteo Pellegrini, Arjun Deb
Rimao Wu, Feiyang Ma, Anela Tosevska, Colin Farrell, Matteo Pellegrini, Arjun Deb
View: Text | PDF
Research Article Aging Cardiology

Cardiac fibroblast proliferation rates and collagen expression mature early and are unaltered with advancing age

  • Text
  • PDF
Abstract

Cardiac fibrosis is a pathophysiologic hallmark of the aging heart, but little is known about how fibroblast proliferation and transcriptional programs change throughout the life span of the organism. Using EdU pulse labeling, we demonstrated that more than 50% of cardiac fibroblasts were actively proliferating in the first day of postnatal life. However, by 4 weeks, only 10% of cardiac fibroblasts were proliferating. By early adulthood, the fraction of proliferating cardiac fibroblasts further decreased to approximately 2%, where it remained throughout the rest of the organism’s life. We observed that maximal changes in cardiac fibroblast transcriptional programs and, in particular, collagen and ECM gene expression both in the heart and cardiac fibroblast were maximal in the newly born and juvenile animal and decreased with organismal aging. Examination of DNA methylation changes both in the heart and in cardiac fibroblasts did not demonstrate significant changes in differentially methylated regions between young and old mice. Our observations demonstrate that cardiac fibroblasts attain a stable proliferation rate and transcriptional program early in the life span of the organism and suggest that phenotypic changes in the aging heart are not directly attributable to changes in proliferation rate or altered collagen expression in cardiac fibroblasts.

Authors

Rimao Wu, Feiyang Ma, Anela Tosevska, Colin Farrell, Matteo Pellegrini, Arjun Deb

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 884 255
PDF 120 28
Figure 378 8
Table 169 0
Supplemental data 63 8
Citation downloads 95 0
Totals 1,709 299
Total Views 2,008
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts