Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Stem cell transplantation uncovers TDO-AHR regulation of lung dendritic cells in herpesvirus-induced pathology
Stephen J. Gurczynski, Nicolas L. Pereira, Steven M. Hrycaj, Carol Wilke, Rachel L. Zemans, Bethany B. Moore
Stephen J. Gurczynski, Nicolas L. Pereira, Steven M. Hrycaj, Carol Wilke, Rachel L. Zemans, Bethany B. Moore
View: Text | PDF
Research Article Immunology Transplantation

Stem cell transplantation uncovers TDO-AHR regulation of lung dendritic cells in herpesvirus-induced pathology

  • Text
  • PDF
Abstract

The aryl-hydrocarbon receptor (AHR) is an intracellular sensor of aromatic hydrocarbons that sits at the top of various immunomodulatory pathways. Here, we present evidence that AHR plays a role in controlling IL-17 responses and the development of pulmonary fibrosis in response to respiratory pathogens following bone marrow transplant (BMT). Mice infected intranasally with gamma-herpesvirus 68 (γHV-68) following BMT displayed elevated levels of the AHR ligand, kynurenine (kyn), in comparison with control mice. Inhibition or genetic ablation of AHR signaling resulted in a significant decrease in IL-17 expression as well as a reduction in lung pathology. Lung CD103+ DCs expressed AHR following BMT, and treatment of induced CD103+ DCs with kyn resulted in altered cytokine production in response to γHV-68. Interestingly, mice deficient in the kyn-producing enzyme indolamine 2-3 dioxygenase showed no differences in cytokine responses to γHV-68 following BMT; however, isolated pulmonary fibroblasts infected with γHV-68 expressed the kyn-producing enzyme tryptophan dioxygenase (TDO2). Our data indicate that alterations in the production of AHR ligands in response to respiratory pathogens following BMT results in a pro-Th17 phenotype that drives lung pathology. We have further identified the TDO2/AHR axis as a potentially novel form of intercellular communication between fibroblasts and DCs that shapes immune responses to respiratory pathogens.

Authors

Stephen J. Gurczynski, Nicolas L. Pereira, Steven M. Hrycaj, Carol Wilke, Rachel L. Zemans, Bethany B. Moore

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 540 71
PDF 100 21
Figure 332 22
Table 25 0
Supplemental data 134 0
Citation downloads 75 0
Totals 1,206 114
Total Views 1,320
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts