Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Neutrophil extracellular traps mediate articular cartilage damage and enhance cartilage component immunogenicity in rheumatoid arthritis
Carmelo Carmona-Rivera, … , Jane H. Buckner, Mariana J. Kaplan
Carmelo Carmona-Rivera, … , Jane H. Buckner, Mariana J. Kaplan
Published June 2, 2020
Citation Information: JCI Insight. 2020;5(13):e139388. https://doi.org/10.1172/jci.insight.139388.
View: Text | PDF
Research Article

Neutrophil extracellular traps mediate articular cartilage damage and enhance cartilage component immunogenicity in rheumatoid arthritis

  • Text
  • PDF
Abstract

Rheumatoid arthritis (RA) is characterized by synovial joint inflammation, cartilage damage, and dysregulation of the adaptive immune system. While neutrophil extracellular traps (NETs) have been proposed to play a role in the generation of modified autoantigens and in the activation of synovial fibroblasts, it remains unknown whether NETs are directly involved in cartilage damage. Here, we report a new mechanism by which NET-derived elastase disrupts cartilage matrix and induces release of membrane-bound peptidylarginine deiminase-2 by fibroblast-like synoviocytes (FLSs). Cartilage fragments are subsequently citrullinated, internalized by FLSs, and then presented to antigen-specific CD4+ T cells. Furthermore, immune complexes containing citrullinated cartilage components can activate macrophages to release proinflammatory cytokines. HLA-DRB1*04:01 transgenic mice immunized with NETs develop autoantibodies against citrullinated cartilage proteins and display enhanced cartilage damage. Inhibition of NET-derived elastase rescues NET-mediated cartilage damage. These results show that NETs and neutrophil elastase externalized in these structures play fundamental pathogenic roles in promoting cartilage damage and synovial inflammation. Strategies targeting neutrophil elastase and NETs could have a therapeutic role in RA and in other inflammatory diseases associated with inflammatory joint damage.

Authors

Carmelo Carmona-Rivera, Philip M. Carlucci, Rishi R. Goel, Eddie James, Stephen R. Brooks, Cliff Rims, Victoria Hoffmann, David A. Fox, Jane H. Buckner, Mariana J. Kaplan

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,021 415
PDF 141 108
Figure 391 4
Supplemental data 82 4
Citation downloads 90 0
Totals 1,725 531
Total Views 2,256
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts