Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Kidney-induced systemic tolerance of heart allografts in mice
Chao Yang, Jifu Ge, Ivy Rosales, Qing Yuan, Edward Szuter, Ellen Acheampong, Paul S. Russell, Joren C. Madsen, Robert B. Colvin, Alessandro Alessandrini
Chao Yang, Jifu Ge, Ivy Rosales, Qing Yuan, Edward Szuter, Ellen Acheampong, Paul S. Russell, Joren C. Madsen, Robert B. Colvin, Alessandro Alessandrini
View: Text | PDF
Research Article Transplantation

Kidney-induced systemic tolerance of heart allografts in mice

  • Text
  • PDF
Abstract

In swine and nonhuman primates, kidney allografts can induce tolerance of heart allografts, leading to their long-term, immunosuppression-free survival. We refer to this phenomenon as kidney-induced cardiac allograft tolerance (KICAT). In this study, we have developed a murine model for KICAT to determine the underlining cellular/molecular mechanisms. Here, we show that spontaneously accepted DBA/2J kidneys in C57BL/6 recipients induce systemic tolerance that results in the long-term acceptance of DBA/2J heart allografts but not third-party cardiac allografts. The state of systemic tolerance of hearts was established 2 weeks after transplantation of the kidney, after which time, the kidney allograft is no longer required. Depletion of Foxp3+ T cells from these mice precipitated rejection of the heart allografts, indicating that KICAT is dependent on Treg function. Acceptance of kidney allografts and cotransplanted heart allografts did not require the thymus. In conclusion, these data show that kidney allografts induce systemic, donor-specific tolerance of cardiac allografts via Foxp3 cells, and that tolerance is independent of the thymus and continued presence of the kidney allograft. This experimental system should promote increased understanding of the tolerogenic mechanisms of the kidney.

Authors

Chao Yang, Jifu Ge, Ivy Rosales, Qing Yuan, Edward Szuter, Ellen Acheampong, Paul S. Russell, Joren C. Madsen, Robert B. Colvin, Alessandro Alessandrini

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 471 92
PDF 111 16
Figure 306 0
Citation downloads 79 0
Totals 967 108
Total Views 1,075
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts