Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Molecular detection of SARS-CoV-2 in formalin-fixed, paraffin-embedded specimens
Jun Liu, … , Jens H. Kuhn, Xiankun Zeng
Jun Liu, … , Jens H. Kuhn, Xiankun Zeng
Published May 7, 2020
Citation Information: JCI Insight. 2020;5(12):e139042. https://doi.org/10.1172/jci.insight.139042.
View: Text | PDF
Resource and Technical Advance COVID-19 Virology

Molecular detection of SARS-CoV-2 in formalin-fixed, paraffin-embedded specimens

  • Text
  • PDF
Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of human coronavirus disease 2019 (COVID-19), emerged in Wuhan, China, in December 2019. The virus rapidly spread globally, resulting in a public health crisis including almost 5 million cases and 323,256 deaths as of May 21, 2020. Here, we describe the identification and evaluation of commercially available reagents and assays for the molecular detection of SARS-CoV-2 in infected FFPE cell pellets. We identified a suitable rabbit polyclonal anti–SARS-CoV spike protein antibody and a mouse monoclonal anti–SARS-CoV nucleocapsid protein (NP) antibody for cross-detection of the respective SARS-CoV-2 proteins by IHC and immunofluorescence assay (IFA). Next, we established RNAscope in situ hybridization (ISH) to detect SARS-CoV-2 RNA. Furthermore, we established a multiplex FISH (mFISH) to detect positive-sense SARS-CoV-2 RNA and negative-sense SARS-CoV-2 RNA (a replicative intermediate indicating viral replication). Finally, we developed a dual staining assay using IHC and ISH to detect SARS-CoV-2 antigen and RNA in the same FFPE section. It is hoped that these reagents and assays will accelerate COVID-19 pathogenesis studies in humans and in COVID-19 animal models.

Authors

Jun Liu, April M. Babka, Brian J. Kearney, Sheli R. Radoshitzky, Jens H. Kuhn, Xiankun Zeng

×

Usage data is cumulative from June 2022 through June 2023.

Usage JCI PMC
Text version 1,957 272
PDF 230 89
Figure 354 2
Supplemental data 91 13
Citation downloads 52 0
Totals 2,684 376
Total Views 3,060

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts