Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Epithelial IL-33 appropriates exosome trafficking for secretion in chronic airway disease
Ella Katz-Kiriakos, … , Mark J. Miller, Jennifer Alexander-Brett
Ella Katz-Kiriakos, … , Mark J. Miller, Jennifer Alexander-Brett
Published January 28, 2021
Citation Information: JCI Insight. 2021;6(4):e136166. https://doi.org/10.1172/jci.insight.136166.
View: Text | PDF
Research Article Immunology Pulmonology

Epithelial IL-33 appropriates exosome trafficking for secretion in chronic airway disease

  • Text
  • PDF
Abstract

IL-33 is a key mediator of chronic airway disease driven by type 2 immune pathways, yet the nonclassical secretory mechanism for this cytokine remains undefined. We performed a comprehensive analysis in human airway epithelial cells, which revealed that tonic IL-33 secretion is dependent on the ceramide biosynthetic enzyme neutral sphingomyelinase 2 (nSMase2). IL-33 is cosecreted with exosomes by the nSMase2-regulated multivesicular endosome (MVE) pathway as surface-bound cargo. In support of these findings, human chronic obstructive pulmonary disease (COPD) specimens exhibited increased epithelial expression of the abundantly secreted IL33Δ34 isoform and augmented nSMase2 expression compared with non-COPD specimens. Using an Alternaria-induced airway disease model, we found that the nSMase2 inhibitor GW4869 abrogated both IL-33 and exosome secretion as well as downstream inflammatory pathways. This work elucidates a potentially novel aspect of IL-33 biology that may be targeted for therapeutic benefit in chronic airway diseases driven by type 2 inflammation.

Authors

Ella Katz-Kiriakos, Deborah F. Steinberg, Colin E. Kluender, Omar A. Osorio, Catie Newsom-Stewart, Arjun Baronia, Derek E. Byers, Michael J. Holtzman, Dawn Katafiasz, Kristina L. Bailey, Steven L. Brody, Mark J. Miller, Jennifer Alexander-Brett

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts