Abstract

Allograft inflammatory factor-1 (AIF1) is a calcium-responsive cytoplasmic scaffold protein that directs hematopoiesis and immune responses within dendritic cells (DC) and macrophages. Although the role of AIF1 in transplant rejection and rheumatoid arthritis has been explored, little is known about its role in type 1 diabetes. Here, we show that in vivo silencing of AIF1 in NOD mice restrained infiltration of immune cells into the pancreas and inhibited diabetes incidence. Analyses of FACS-sorted CD45neg nonleukocyte populations from resected pancreatic islets showed markedly higher expression of insulin in the AIF1-silenced groups. Evaluation of CD45+ leukocytes revealed diminished infiltration of effector T cells and DC in the absence of AIF1. Transcriptional profiling further revealed a marked decrease in cDC1 DC-associated genes CD103, BATF3, and IRF8, which are required for orchestrating polarized type 1 immunity. Reduced T cell numbers within the islets were observed, with concomitant lower levels of IFN-γ and T-bet in AIF1-silenced cohorts. In turn, there was a reciprocal increase in functionally suppressive pancreas-resident CD25+Foxp3+CD4+ Tregs. Taken together, results show that AIF1 expression in myeloid cells plays a pivotal role in promoting type 1 diabetes and that its suppression restrains insulitis by shifting the immune microenvironment toward tolerance.

Authors

Diana M. Elizondo, Nailah Z.D. Brandy, Ricardo L. da Silva, Tatiana R. de Moura, Michael W. Lipscomb

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement