The sympathetic nervous system plays an important role in the occurrence of ventricular tachycardia (VT). Many patients, however, experience VT despite maximal doses of beta blocker therapy, possibly due to the effects of sympathetic cotransmitters such as neuropeptide Y (NPY). The purpose of this study was to determine, in a porcine model, whether propranolol at doses higher than clinically recommended could block ventricular electrophysiological effects of sympathoexcitation via stellate ganglia stimulation, and if any residual effects are mediated by NPY. Greater release of cardiac NPY was observed at higher sympathetic stimulation frequencies (10 and 20 vs. 4 Hz). Despite treatment with even higher doses of propranolol (1.0 mg/kg), electrophysiological effects of sympathetic stimulation remained, with residual shortening of activation recovery interval (ARI), a surrogate of action potential duration (APD). Adjuvant treatment with the NPY Y1 receptor antagonist BIBO 3304, however, reduced these electrophysiological effects while augmenting inotropy. These data demonstrate that high-dose beta blocker therapy is insufficient to block electrophysiological effects of sympathoexcitation, and a portion of these electrical effects in vivo are mediated by NPY. Y1 receptor blockade may represent a promising adjuvant therapy to beta-adrenergic receptor blockade.
Jonathan D. Hoang, Siamak Salavatian, Naoko Yamaguchi, Mohammed Amer Swid, David Hamon, Marmar Vaseghi
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 482 | 195 |
75 | 56 | |
Figure | 201 | 2 |
Table | 44 | 0 |
Supplemental data | 49 | 0 |
Citation downloads | 68 | 0 |
Totals | 919 | 253 |
Total Views | 1,172 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.