Next-generation sequencing (NGS) has not revealed all the mechanisms underlying resistance to genomically matched drugs. Here, we performed in 1417 tumors whole-exome tumor (somatic)/normal (germline) NGS and whole-transcriptome sequencing, the latter focusing on a clinically oriented 50-gene panel in order to examine transcriptomic silencing of putative driver alterations. In this large-scale study, approximately 13% of the somatic single nucleotide variants (SNVs) were unexpectedly not expressed as RNA; 23% of patients had ≥1 nonexpressed SNV. SNV-bearing genes consistently transcribed were TP53, PIK3CA, and KRAS; those with lower transcription rates were ALK, CSF1R, ERBB4, FLT3, GNAS, HNF1A, KDR, PDGFRA, RET, and SMO. We also determined the frequency of tumor mutations being germline, rather than somatic, in these and an additional 462 tumors with tumor/normal exomes; 33.8% of germline SNVs within the gene panel were rare (not found after filtering through variant information domains) and at risk of being falsely reported as somatic. Both the frequency of silenced variant transcription and the risk of falsely identifying germline mutations as somatic/tumor related are important phenomena. Therefore, transcriptomics is a critical adjunct to genomics when interrogating patient tumors for actionable alterations, because, without expression of the target aberrations, there will likely be therapeutic resistance.
Jacob J. Adashek, Shumei Kato, Rahul Parulkar, Christopher W. Szeto, J. Zachary Sanborn, Charles J. Vaske, Stephen C. Benz, Sandeep K. Reddy, Razelle Kurzrock
Usage data is cumulative from September 2022 through September 2023.
Usage | JCI | PMC |
---|---|---|
Text version | 302 | 97 |
21 | 18 | |
Figure | 21 | 0 |
Table | 23 | 0 |
Supplemental data | 19 | 1 |
Citation downloads | 15 | 0 |
Totals | 401 | 116 |
Total Views | 517 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.