Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Lupus-associated endogenous retroviral LTR polymorphism and epigenetic imprinting promote HRES-1/RAB4 expression and mTOR activation
Aparna Godavarthy, Ryan Kelly, John Jimah, Miguel Beckford, Tiffany Caza, David Fernandez, Nick Huang, Manuel Duarte, Joshua Lewis, Hind J. Fadel, Eric M. Poeschla, Katalin Banki, Andras Perl
Aparna Godavarthy, Ryan Kelly, John Jimah, Miguel Beckford, Tiffany Caza, David Fernandez, Nick Huang, Manuel Duarte, Joshua Lewis, Hind J. Fadel, Eric M. Poeschla, Katalin Banki, Andras Perl
View: Text | PDF
Research Article Immunology

Lupus-associated endogenous retroviral LTR polymorphism and epigenetic imprinting promote HRES-1/RAB4 expression and mTOR activation

  • Text
  • PDF
Abstract

Overexpression and long terminal repeat (LTR) polymorphism of the HRES‑1/Rab4 human endogenous retrovirus locus have been associated with T cell activation and disease manifestations in systemic lupus erythematosus (SLE). Although genomic DNA methylation is diminished overall in SLE, its role in HRES-1/Rab4 expression is unknown. Therefore, we determined how lupus-associated polymorphic rs451401 alleles of the LTR regulate transcription from the HRES-1/Rab4 promoter and thus affect T cell activation. The results showed that cytosine–119 is hypermethylated while cytosine–51 of the promoter and the LTR enhancer are hypomethylated in SLE. Pharmacologic or genetic inactivation of DNA methyltransferase 1 augmented the expression of HRES-1/Rab4. The minimal promoter was selectively recognized by metabolic stress sensor NRF1 when cytosine–119 but not cytosine–51 was methylated, and NRF1 stimulated HRES-1/Rab4 expression in human T cells. In turn, IRF2 and PSIP1 bound to the LTR enhancer and exerted control over HRES-1/Rab4 expression in rs451401 genotype– and methylation-dependent manners. The LTR enhancer conferred markedly greater expression of HRES-1/Rab4 in subjects with rs451401CC over rs451401GG alleles that in turn promoted mechanistic target of rapamycin (mTOR) activation upon T cell receptor stimulation. HRES-1/Rab4 alone robustly activated mTOR in human T cells. These findings identify HRES-1/Rab4 as a methylation- and rs451401 allele–dependent transducer of environmental stress and controller of T cell activation.

Authors

Aparna Godavarthy, Ryan Kelly, John Jimah, Miguel Beckford, Tiffany Caza, David Fernandez, Nick Huang, Manuel Duarte, Joshua Lewis, Hind J. Fadel, Eric M. Poeschla, Katalin Banki, Andras Perl

×

Figure 3

Expression of HRES-1/Rab4 is regulated by DNMT1.

Options: View larger image (or click on image) Download as PowerPoint
Expression of HRES-1/Rab4 is regulated by DNMT1.
(A) Expression of Rab4A...
(A) Expression of Rab4A is stimulated by treatment of Jurkat cells with hydralazine and procainamide over 48 hours. Top: representative Western blots. Bottom: cumulative analyses. (B) Western blot analysis of Rab4A relative to β-actin in HCT-166 colon carcinoma cells lacking DNMT1 (line no. 30), DNMT3b (line no. 38), or both DNMT1 and DNMT3b (DNMT1/3-DKO, line no. 343) as well as in HCT-166 colon carcinoma cells with wild-type DNMT1 and DNMT3 alleles (line no. 28). Top: representative Western blots. Bottom: cumulative analyses. Data represent mean ± SEM. P values represent comparison using 2-tailed paired t test, which reflect hypothesis testing and have not been corrected for multiple comparisons.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts