Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Effects of MYBPC3 loss-of-function mutations preceding hypertrophic cardiomyopathy
Adam S. Helms, … , Michael J. Previs, Sharlene M. Day
Adam S. Helms, … , Michael J. Previs, Sharlene M. Day
Published December 26, 2019
Citation Information: JCI Insight. 2020;5(2):e133782. https://doi.org/10.1172/jci.insight.133782.
View: Text | PDF
Research Article Cardiology

Effects of MYBPC3 loss-of-function mutations preceding hypertrophic cardiomyopathy

  • Text
  • PDF
Abstract

Mutations in cardiac myosin binding protein C (MyBP-C, encoded by MYBPC3) are the most common cause of hypertrophic cardiomyopathy (HCM). Most MYBPC3 mutations result in premature termination codons (PTCs) that cause RNA degradation and a reduction of MyBP-C in HCM patient hearts. However, a reduction in MyBP-C has not been consistently observed in MYBPC3-mutant induced pluripotent stem cell cardiomyocytes (iPSCMs). To determine early MYBPC3 mutation effects, we used patient and genome-engineered iPSCMs. iPSCMs with frameshift mutations were compared with iPSCMs with MYBPC3 promoter and translational start site deletions, revealing that allelic loss of function is the primary inciting consequence of mutations causing PTCs. Despite a reduction in wild-type mRNA in all heterozygous iPSCMs, no reduction in MyBP-C protein was observed, indicating protein-level compensation through what we believe is a previously uncharacterized mechanism. Although homozygous mutant iPSCMs exhibited contractile dysregulation, heterozygous mutant iPSCMs had normal contractile function in the context of compensated MyBP-C levels. Agnostic RNA-Seq analysis revealed differential expression in genes involved in protein folding as the only dysregulated gene set. To determine how MYBPC3-mutant iPSCMs achieve compensated MyBP-C levels, sarcomeric protein synthesis and degradation were measured with stable isotope labeling. Heterozygous mutant iPSCMs showed reduced MyBP-C synthesis rates but a slower rate of MyBP-C degradation. These findings indicate that cardiomyocytes have an innate capacity to attain normal MyBP-C stoichiometry despite MYBPC3 allelic loss of function due to truncating mutations. Modulating MyBP-C degradation to maintain MyBP-C protein levels may be a novel treatment approach upstream of contractile dysfunction for HCM.

Authors

Adam S. Helms, Vi T. Tang, Thomas S. O’Leary, Sabrina Friedline, Mick Wauchope, Akul Arora, Aaron H. Wasserman, Eric D. Smith, Lap Man Lee, Xiaoquan W. Wen, Jordan A. Shavit, Allen P. Liu, Michael J. Previs, Sharlene M. Day

×

Usage data is cumulative from June 2022 through June 2023.

Usage JCI PMC
Text version 4,723 1,078
PDF 465 318
Figure 979 22
Supplemental data 214 38
Citation downloads 110 0
Totals 6,491 1,456
Total Views 7,947

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts