Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Mitochondrial arginase-2 is a cell‑autonomous regulator of CD8+ T cell function and antitumor efficacy
Adrià-Arnau Martí i Líndez, Isabelle Dunand-Sauthier, Mark Conti, Florian Gobet, Nicolás Núñez, J. Thomas Hannich, Howard Riezman, Roger Geiger, Alessandra Piersigilli, Kerstin Hahn, Sylvain Lemeille, Burkhard Becher, Thibaut De Smedt, Stéphanie Hugues, Walter Reith
Adrià-Arnau Martí i Líndez, Isabelle Dunand-Sauthier, Mark Conti, Florian Gobet, Nicolás Núñez, J. Thomas Hannich, Howard Riezman, Roger Geiger, Alessandra Piersigilli, Kerstin Hahn, Sylvain Lemeille, Burkhard Becher, Thibaut De Smedt, Stéphanie Hugues, Walter Reith
View: Text | PDF
Research Article Immunology Oncology

Mitochondrial arginase-2 is a cell‑autonomous regulator of CD8+ T cell function and antitumor efficacy

  • Text
  • PDF
Abstract

As sufficient extracellular arginine is crucial for T cell function, depletion of extracellular arginine by elevated arginase 1 (Arg1) activity has emerged as a hallmark immunosuppressive mechanism. However, the potential cell-autonomous roles of arginases in T cells have remained unexplored. Here, we show that the arginase isoform expressed by T cells, the mitochondrial Arg2, is a cell-intrinsic regulator of CD8+ T cell activity. Both germline Arg2 deletion and adoptive transfer of Arg2–/– CD8+ T cells significantly reduced tumor growth in preclinical cancer models by enhancing CD8+ T cell activation, effector function, and persistence. Transcriptomic, proteomic, and high-dimensional flow cytometry characterization revealed a CD8+ T cell–intrinsic role of Arg2 in modulating T cell activation, antitumor cytoxicity, and memory formation, independently of extracellular arginine availability. Furthermore, specific deletion of Arg2 in CD8+ T cells strongly synergized with PD-1 blockade for the control of tumor growth and animal survival. These observations, coupled with the finding that pharmacologic arginase inhibition accelerates activation of ex vivo human T cells, unveil Arg2 as a potentially new therapeutic target for T cell–based cancer immunotherapies.

Authors

Adrià-Arnau Martí i Líndez, Isabelle Dunand-Sauthier, Mark Conti, Florian Gobet, Nicolás Núñez, J. Thomas Hannich, Howard Riezman, Roger Geiger, Alessandra Piersigilli, Kerstin Hahn, Sylvain Lemeille, Burkhard Becher, Thibaut De Smedt, Stéphanie Hugues, Walter Reith

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 1,487 238
PDF 171 52
Figure 549 0
Supplemental data 78 11
Citation downloads 127 0
Totals 2,412 301
Total Views 2,713
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts