Ultrasound-induced microbubble (USMB) cavitation is widely used to promote drug delivery. Our previous study investigated USMB targeting the round window membrane by applying the ultrasound transducer to the tympanic bulla. In the present study, we further extended the use of this technology to enhance drug delivery to the inner ear by introducing the ultrasound transducer into the external auditory canal (EAC) or applying it to the skull. Using a 3-dimensional–printed diffusion apparatus mimicking the pathway for ultrasound passing through and reaching the middle ear cavity in vitro, the models simulating the transcanal and transcranial approach demonstrated 4.8-fold– and 3.7-fold–higher delivery efficiencies, respectively. In an in vivo model of guinea pigs, by filling tympanic bulla with microbubbles and biotin-FITC, USMB applied transcanally and transcranially induced 2.8-fold and 1.5-fold increases in biotin-FITC delivery efficiencies, respectively. In addition, the gentamicin uptake by cochlear and vestibular hair cells and gentamicin-induced hair cell loss were significantly enhanced following transcanal application of USMB. On the 28th day after transcanal USMB, safety assessment showed no significant changes in the hearing thresholds and the integrity of cochlea. These are the first results to our knowledge to demonstrate the feasibility and support the potential clinical application of applying USMB via EAC to facilitate drug delivery into the inner ear.
Ai-Ho Liao, Chih-Hung Wang, Ping-Yu Weng, Yi-Chun Lin, Hao Wang, Hang-Kang Chen, Hao-Li Liu, Ho-Chiao Chuang, Cheng-Ping Shih
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 710 | 338 |
90 | 124 | |
Figure | 350 | 9 |
Citation downloads | 66 | 0 |
Totals | 1,216 | 471 |
Total Views | 1,687 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.