Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans
Claire Laurens, Anisha Parmar, Enda Murphy, Deborah Carper, Benjamin Lair, Pauline Maes, Julie Vion, Nathalie Boulet, Coralie Fontaine, Marie Marquès, Dominique Larrouy, Isabelle Harant, Claire Thalamas, Emilie Montastier, Sylvie Caspar-Bauguil, Virginie Bourlier, Geneviève Tavernier, Jean-Louis Grolleau, Anne Bouloumié, Dominique Langin, Nathalie Viguerie, Fabrice Bertile, Stéphane Blanc, Isabelle de Glisezinski, Donal O’Gorman, Cedric Moro
Claire Laurens, Anisha Parmar, Enda Murphy, Deborah Carper, Benjamin Lair, Pauline Maes, Julie Vion, Nathalie Boulet, Coralie Fontaine, Marie Marquès, Dominique Larrouy, Isabelle Harant, Claire Thalamas, Emilie Montastier, Sylvie Caspar-Bauguil, Virginie Bourlier, Geneviève Tavernier, Jean-Louis Grolleau, Anne Bouloumié, Dominique Langin, Nathalie Viguerie, Fabrice Bertile, Stéphane Blanc, Isabelle de Glisezinski, Donal O’Gorman, Cedric Moro
View: Text | PDF
Research Article Metabolism

Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans

  • Text
  • PDF
Abstract

We hypothesized that skeletal muscle contraction produces a cellular stress signal, triggering adipose tissue lipolysis to sustain fuel availability during exercise. The present study aimed at identifying exercise-regulated myokines, also known as exerkines, able to promote lipolysis. Human primary myotubes from lean healthy volunteers were submitted to electrical pulse stimulation (EPS) to mimic either acute intense or chronic moderate exercise. Conditioned media (CM) experiments with human adipocytes were performed. CM and human plasma samples were analyzed using unbiased proteomic screening and/or ELISA. Real-time qPCR was performed in cultured myotubes and muscle biopsy samples. CM from both acute intense and chronic moderate exercise increased basal lipolysis in human adipocytes. Growth and differentiation factor 15 (GDF15) gene expression and secretion increased rapidly upon skeletal muscle contraction. GDF15 protein was upregulated in CM from both acute and chronic exercise–stimulated myotubes. We further showed that physiological concentrations of recombinant GDF15 protein increased lipolysis in human adipose tissue, while blocking GDF15 with a neutralizing antibody abrogated EPS CM-mediated lipolysis. We herein provide the first evidence to our knowledge that GDF15 is a potentially novel exerkine produced by skeletal muscle contraction and able to target human adipose tissue to promote lipolysis.

Authors

Claire Laurens, Anisha Parmar, Enda Murphy, Deborah Carper, Benjamin Lair, Pauline Maes, Julie Vion, Nathalie Boulet, Coralie Fontaine, Marie Marquès, Dominique Larrouy, Isabelle Harant, Claire Thalamas, Emilie Montastier, Sylvie Caspar-Bauguil, Virginie Bourlier, Geneviève Tavernier, Jean-Louis Grolleau, Anne Bouloumié, Dominique Langin, Nathalie Viguerie, Fabrice Bertile, Stéphane Blanc, Isabelle de Glisezinski, Donal O’Gorman, Cedric Moro

×

Figure 4

Changes in plasma GDF15 levels with exercise, obesity and lifestyle intervention.

Options: View larger image (or click on image) Download as PowerPoint
Changes in plasma GDF15 levels with exercise, obesity and lifestyle inte...
(A–C) Human study 2: plasma GDF15 changes in lean healthy volunteers in response to (A) endurance exercise for 1 hour at 60% VO2max, (B) sprint interval exercise of 7 repetitions at 130% of maximal workload, and (C) delta change from rest to exercise during endurance versus sprint interval exercise. Data are expressed as mean ± SEM (n = 8–15). **P < 0.01 compared with control by 2-tailed paired Student’s t test. (D–F) Human study 3: plasma GDF15 changes in obese middle-aged (D) and elderly (E) subjects at baseline and in response to a 8-week lifestyle intervention-induced weight loss program. Data are expressed as mean ± SEM (n = 8). **P < 0.01, ***P < 0.001 compared with control by 2-tailed paired Student’s t test. (F) Plasma GDF15 changes in response to lifestyle intervention–induced weight loss in obese individuals (all subjects). Data are expressed as mean ± SEM (n = 16). *P < 0.05 compared with control by 2-tailed paired Student’s t test. (G) Plasma GDF15 levels in lean healthy (study 2) versus middle-aged obese individuals (study 3). (H) Plasma GDF15 levels in middle-aged obese versus elderly obese individuals (study 3). *P < 0.05 compared with Young by 2-tailed unpaired Student’s t test.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts