Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Using a barcoded AAV capsid library to select for clinically relevant gene therapy vectors
Katja Pekrun, … , Markus Grompe, Mark A. Kay
Katja Pekrun, … , Markus Grompe, Mark A. Kay
Published November 14, 2019
Citation Information: JCI Insight. 2019;4(22):e131610. https://doi.org/10.1172/jci.insight.131610.
View: Text | PDF
Resource and Technical Advance Therapeutics

Using a barcoded AAV capsid library to select for clinically relevant gene therapy vectors

  • Text
  • PDF
Abstract

While gene transfer using recombinant adeno-associated viral (rAAV) vectors has shown success in some clinical trials, there remain many tissues that are not well transduced. Because of the recent success in reprogramming islet-derived cells into functional β cells in animal models, we constructed 2 highly complex barcoded replication competent capsid shuffled libraries and selected for high-transducing variants on primary human islets. We describe the generation of a chimeric AAV capsid (AAV-KP1) that facilitates transduction of primary human islet cells and human embryonic stem cell–derived β cells with up to 10-fold higher efficiency compared with previously studied best-in-class AAV vectors. Remarkably, this chimeric capsid also enabled transduction of both mouse and human hepatocytes at very high levels in a humanized chimeric mouse model, thus providing a versatile vector that has the potential to be used in both preclinical testing and human clinical trials for liver-based diseases and diabetes.

Authors

Katja Pekrun, Gustavo De Alencastro, Qing-Jun Luo, Jun Liu, Youngjin Kim, Sean Nygaard, Feorillo Galivo, Feijie Zhang, Ren Song, Matthew R. Tiffany, Jianpeng Xu, Matthias Hebrok, Markus Grompe, Mark A. Kay

×

Figure 3

Rescue of enriched capsid sequences and evaluation of selected capsids for islet transduction.

Options: View larger image (or click on image) Download as PowerPoint
Rescue of enriched capsid sequences and evaluation of selected capsids f...
(A) The forward primer annealed to a sequence in the 3′ end of the rep gene; the reverse primer was specific to the sequence of the right barcode of the variant capsid to be amplified. (B) A self-complementary AAV-expressing GFP was packaged with LK03, as well as 12 capsid sequences, and islet cells were transduced using a low MOI of 1,000. Cells were sorted for GFP expression using FACS 48 hours later. Each rAAV was evaluated once. (C) Dissociated islet cells were transduced with CsCl gradient–purified scCAG-GFP rAAV preparations generated with the 2 best parental capsids, as well as the capsids that were the top transducers in the prescreen. Three different MOIs were used for transduction. Transduction efficiency is depicted both as the percentage of GFP+ cells (left graph) and the median fluorescence intensity within the GFP+ cell population (right graph). Results of a representative experiment that was performed twice are shown.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts