Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Cadherin-11 blockade reduces inflammation-driven fibrotic remodeling and improves outcomes after myocardial infarction
Alison K. Schroer, Matthew R. Bersi, Cynthia R. Clark, Qinkun Zhang, Lehanna H. Sanders, Antonis K. Hatzopoulos, Thomas L. Force, Susan M. Majka, Hind Lal, W. David Merryman
Alison K. Schroer, Matthew R. Bersi, Cynthia R. Clark, Qinkun Zhang, Lehanna H. Sanders, Antonis K. Hatzopoulos, Thomas L. Force, Susan M. Majka, Hind Lal, W. David Merryman
View: Text | PDF
Research Article Cardiology

Cadherin-11 blockade reduces inflammation-driven fibrotic remodeling and improves outcomes after myocardial infarction

  • Text
  • PDF
Abstract

Over one million Americans experience myocardial infarction (MI) annually, and the resulting scar and subsequent cardiac fibrosis gives rise to heart failure. A specialized cell-cell adhesion protein, cadherin-11 (CDH11), contributes to inflammation and fibrosis in rheumatoid arthritis, pulmonary fibrosis, and aortic valve calcification but has not been studied in myocardium after MI. MI was induced by ligation of the left anterior descending artery in mice with either heterozygous or homozygous knockout of CDH11, wild-type mice receiving bone marrow transplants from Cdh11-deficient animals, and wild-type mice treated with a functional blocking antibody against CDH11 (SYN0012). Flow cytometry revealed significant CDH11 expression in noncardiomyocyte cells after MI. Animals given SYN0012 had improved cardiac function, as measured by echocardiogram, reduced tissue remodeling, and altered transcription of inflammatory and proangiogenic genes. Targeting CDH11 reduced bone marrow–derived myeloid cells and increased proangiogenic cells in the heart 3 days after MI. Cardiac fibroblast and macrophage interactions increased IL-6 secretion in vitro. Our findings suggest that CDH11-expressing cells contribute to inflammation-driven fibrotic remodeling after MI and that targeting CDH11 with a blocking antibody improves outcomes by altering recruitment of bone marrow–derived cells, limiting the macrophage-induced expression of IL-6 by fibroblasts and promoting vascularization.

Authors

Alison K. Schroer, Matthew R. Bersi, Cynthia R. Clark, Qinkun Zhang, Lehanna H. Sanders, Antonis K. Hatzopoulos, Thomas L. Force, Susan M. Majka, Hind Lal, W. David Merryman

×

Figure 7

Coculture of macrophages and cardiac fibroblasts increases proinflammatory and profibrotic signaling.

Options: View larger image (or click on image) Download as PowerPoint
Coculture of macrophages and cardiac fibroblasts increases proinflammato...
Coculture of macrophages and cardiac fibroblasts (CFs) promotes secretion of IL-6 by CFs in a macrophage-dependent manner (A). CDH11 blockade by SYN0012 treatment significantly reduced IL-6 secretion in CF-macrophage cocultures at high macrophage concentrations (B). Secreted IL-6 was measured in media of CF-macrophage cocultures by ELISA. Data are presented as mean ± SEM; each dot represents a biological replicate (n = 3). Significance was determined by 1- and 2-way ANOVA, with a Holms-Sidak’s multiple comparison tests. ^P < 0.05 between macrophage conditions, #P < 0.05 relative to CF-only control, *P < 0.05 between treatments; color of significance marker denotes treatment group.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts