Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Immune cell landscaping reveals a protective role for regulatory T cells during kidney injury and fibrosis
Fernanda do Valle Duraes, … , Guglielmo Roma, Max Warncke
Fernanda do Valle Duraes, … , Guglielmo Roma, Max Warncke
Published February 13, 2020
Citation Information: JCI Insight. 2020;5(3):e130651. https://doi.org/10.1172/jci.insight.130651.
View: Text | PDF
Research Article Immunology Nephrology

Immune cell landscaping reveals a protective role for regulatory T cells during kidney injury and fibrosis

  • Text
  • PDF
Abstract

Acute kidney injury (AKI) and chronic kidney diseases are associated with high mortality and morbidity. Although the underlying mechanisms determining the transition from acute to chronic injury are not completely understood, immune-mediated processes are critical in renal injury. We have performed a comparison of 2 mouse models leading to either kidney regeneration or fibrosis. Using global gene expression profiling we could identify immune-related pathways accounting for the majority of the observed transcriptional changes during fibrosis. Unbiased examination of the immune cell composition, using single-cell RNA sequencing, revealed major changes in tissue-resident macrophages and T cells. Following injury, there was a marked increase in tissue-resident IL-33R+ and IL-2Ra+ regulatory T cells (Tregs). Expansion of this population before injury protected the kidney from injury and fibrosis. Transcriptional profiling of Tregs showed a differential upregulation of regenerative and proangiogenic pathways during regeneration, whereas in the fibrotic environment they expressed markers of hyperactivation and fibrosis. Our data point to a hitherto underappreciated plasticity in Treg function within the same tissue, dictated by environmental cues. Overall, we provide a detailed cellular and molecular characterization of the immunological changes during kidney injury, regeneration, and fibrosis.

Authors

Fernanda do Valle Duraes, Armelle Lafont, Martin Beibel, Kea Martin, Katy Darribat, Rachel Cuttat, Annick Waldt, Ulrike Naumann, Grazyna Wieczorek, Swann Gaulis, Sabina Pfister, Kirsten D. Mertz, Jianping Li, Guglielmo Roma, Max Warncke

×

Figure 5

New markers of tissue-resident regulatory T cells during kidney injury and fibrosis.

Options: View larger image (or click on image) Download as PowerPoint
New markers of tissue-resident regulatory T cells during kidney injury a...
Bulk RNA-Seq analysis showing detected transcriptional differences. (A and B) Volcano plots with the log fold change (FC) and P value for the comparison between Treg versus Tconv genes for the indicated conditions and tissues. Selected Tconv and core Treg genes are highlighted in blue and red, respectively. Numbers indicate the amount of upregulated (red, FC > 2) and downregulated (blue, FC < –2) genes. (C and D) Heatmap representations showing the average expression (FPKM, fragments per kilobase of exon model per million reads mapped) of core Treg signature genes (C) and tissue Treg genes (D) at the indicated conditions. (E) Gene Ontology (GO) pathway analysis showing the top 10 upregulated pathways in Tregs from regeneration (red, top) and fibrosis (blue, bottom), ranked by P value. (F) Heatmaps showing the expression of selected genes from the pathways in E. N, naive; R, regeneration; F, fibrosis; Spl, spleen.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts