Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Computational modeling reveals multiple abnormalities of myocardial noradrenergic function in Lewy body diseases
David S. Goldstein, Mark J. Pekker, Graeme Eisenhofer, Yehonatan Sharabi
David S. Goldstein, Mark J. Pekker, Graeme Eisenhofer, Yehonatan Sharabi
View: Text | PDF
Clinical Research and Public Health Cardiology Neuroscience

Computational modeling reveals multiple abnormalities of myocardial noradrenergic function in Lewy body diseases

  • Text
  • PDF
Abstract

BACKGROUND Lewy body diseases, a family of aging-related neurodegenerative disorders, entail loss of the catecholamine dopamine in the nigrostriatal system and equally severe deficiency of the closely related catecholamine norepinephrine in the heart. The myocardial noradrenergic lesion is associated with major nonmotor symptoms and decreased survival. Numerous mechanisms determine norepinephrine stores, and which of these are altered in Lewy body diseases has not been examined in an integrated way. We used a computational modeling approach to assess comprehensively pathways of cardiac norepinephrine synthesis, storage, release, reuptake, and metabolism in Lewy body diseases. Application of a potentially novel kinetic model identified a pattern of dysfunctional steps contributing to norepinephrine deficiency. We then tested predictions from the model in a new cohort of Parkinson disease patients.METHODS Rate constants were calculated for 17 reactions determining intraneuronal norepinephrine stores. Model predictions were tested by measuring postmortem apical ventricular concentrations and concentration ratios of catechols in controls and patients with Parkinson disease.RESULTS The model identified low rate constants for 3 types of processes in the Lewy body group: catecholamine biosynthesis via tyrosine hydroxylase and aromatic l-amino acid decarboxylase, vesicular storage of dopamine and norepinephrine, and neuronal norepinephrine reuptake via the cell membrane norepinephrine transporter. Postmortem catechols and catechol ratios confirmed this triad of model-predicted functional abnormalities.CONCLUSION Denervation-independent impairments of neurotransmitter biosynthesis, vesicular sequestration, and norepinephrine recycling contribute to the myocardial norepinephrine deficiency attending Lewy body diseases. A proportion of cardiac sympathetic nerves are “sick but not dead,” suggesting targeted disease modification strategies might retard clinical progression.FUNDING Division of Intramural Research, NINDS.

Authors

David S. Goldstein, Mark J. Pekker, Graeme Eisenhofer, Yehonatan Sharabi

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 443 38
PDF 122 21
Figure 213 2
Table 239 0
Supplemental data 46 1
Citation downloads 119 0
Totals 1,182 62
Total Views 1,244
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts