Broadly neutralizing antibodies (bNAbs) against HIV-1 are under evaluation for both prevention and therapy. HIV-1 sequence diversity observed in most HIV-infected individuals and archived variations in critical bNAb epitopes present a major challenge for the clinical application of bNAbs, as preexistent resistant viral strains can emerge, resulting in bNAb failure to control HIV. In order to identify viral resistance in patients prior to antibody therapy and to guide the selection of effective bNAb combination regimens, we developed what we believe to be a novel Bayesian machine-learning model that uses HIV-1 envelope protein sequences and foremost approximated glycan occupancy information as variables to quantitatively predict the half-maximal inhibitory concentrations (IC50) of 126 neutralizing antibodies against a variety of cross clade viruses. We then applied this model to peripheral blood mononuclear cell–derived proviral Env sequences from 25 HIV-1–infected individuals mapping the landscape of neutralization resistance within each individual’s reservoir and determined the predicted ideal bNAb combination to achieve 100% neutralization at IC50 values <1 μg/ml. Furthermore, predicted cellular viral reservoir neutralization signatures of individuals before an analytical antiretroviral treatment interruption were consistent with the measured neutralization susceptibilities of the respective plasma rebound viruses, validating our model as a potentially novel tool to facilitate the advancement of bNAbs into the clinic.
Wen-Han Yu, David Su, Julia Torabi, Christine M. Fennessey, Andrea Shiakolas, Rebecca Lynch, Tae-Wook Chun, Nicole Doria-Rose, Galit Alter, Michael S. Seaman, Brandon F. Keele, Douglas A. Lauffenburger, Boris Julg
Usage data is cumulative from January 2025 through January 2026.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 548 | 117 |
| 245 | 34 | |
| Figure | 376 | 10 |
| Table | 103 | 0 |
| Supplemental data | 144 | 1 |
| Citation downloads | 95 | 0 |
| Totals | 1,511 | 162 |
| Total Views | 1,673 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.