Tissue engineering may address organ shortages currently limiting clinical transplantation. Off-the-shelf engineered vascularized organs will likely use allogeneic endothelial cells (ECs) to construct microvessels required for graft perfusion. Vasculogenic ECs can be differentiated from committed progenitors (human endothelial colony-forming cells or HECFCs) without risk of mutation or teratoma formation associated with reprogrammed stem cells. Like other ECs, these cells can express both class I and class II major histocompatibility complex (MHC) molecules, bind donor-specific antibody (DSA), activate alloreactive T effector memory cells, and initiate rejection in the absence of donor leukocytes. CRISPR/Cas9-mediated dual ablation of β2-microglobulin and class II transactivator (CIITA) in HECFC-derived ECs eliminates both class I and II MHC expression while retaining EC functions and vasculogenic potential. Importantly, dually ablated ECs no longer bind human DSA or activate allogeneic CD4+ effector memory T cells and are resistant to killing by CD8+ alloreactive cytotoxic T lymphocytes in vitro and in vivo. Despite absent class I MHC molecules, these ECs do not activate or elicit cytotoxic activity from allogeneic natural killer cells. These data suggest that HECFC-derived ECs lacking MHC molecule expression can be utilized for engineering vascularized grafts that evade allorejection.
Jonathan Merola, Melanie Reschke, Richard W. Pierce, Lingfeng Qin, Susann Spindler, Tania Baltazar, Thomas D. Manes, Francesc Lopez-Giraldez, Guangxin Li, Laura G. Bracaglia, Catherine Xie, Nancy Kirkiles-Smith, W. Mark Saltzman, Gregory T. Tietjen, George Tellides, Jordan S. Pober
β2-Microglobulinnull and β2-microglobulinnull+CIITAnull ECs evade allogeneic PBMC destruction in a humanized mouse model.