Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
IL-1RA regulates immunopathogenesis during fungal-associated allergic airway inflammation
Matthew S. Godwin, Kristen M. Reeder, Jaleesa M. Garth, Jonathan P. Blackburn, MaryJane Jones, Zhihong Yu, Sadis Matalon, Annette T. Hastie, Deborah A. Meyers, Chad Steele
Matthew S. Godwin, Kristen M. Reeder, Jaleesa M. Garth, Jonathan P. Blackburn, MaryJane Jones, Zhihong Yu, Sadis Matalon, Annette T. Hastie, Deborah A. Meyers, Chad Steele
View: Text | PDF
Research Article Immunology Pulmonology

IL-1RA regulates immunopathogenesis during fungal-associated allergic airway inflammation

  • Text
  • PDF
Abstract

Severe asthma with fungal sensitization (SAFS) defines a subset of human asthmatics with allergy to 1 or more fungal species and difficult-to-control asthma. We have previously reported that human asthmatics sensitized to fungi have worse lung function and a higher degree of atopy, which was associated with higher IL-1 receptor antagonist (IL-1RA) levels in bronchoalveolar lavage fluid. IL-1RA further demonstrated a significant negative association with bronchial hyperresponsiveness to methacholine. Here, we show that IL-1α and IL-1β are elevated in both bronchoalveolar lavage fluid and sputum from human asthmatics sensitized to fungi, implicating an association with IL-1α, IL-1β, or IL-1RA in fungal asthma severity. In an experimental model of fungal-associated allergic airway inflammation, we demonstrate that IL-1R1 signaling promotes type 1 (IFN-γ, CXCL9, CXCL10) and type 17 (IL-17A, IL-22) responses that were associated with neutrophilic inflammation and increased airway hyperreactivity. Each of these were exacerbated in the absence of IL-1RA. Administration of human recombinant IL-1RA (Kineret/anakinra) during fungal-associated allergic airway inflammation improved airway hyperreactivity and lowered type 1 and type 17 responses. Taken together, these data suggest that IL-1R1 signaling contributes to fungal asthma severity via immunopathogenic type 1 and type 17 responses and can be targeted for improving allergic asthma severity.

Authors

Matthew S. Godwin, Kristen M. Reeder, Jaleesa M. Garth, Jonathan P. Blackburn, MaryJane Jones, Zhihong Yu, Sadis Matalon, Annette T. Hastie, Deborah A. Meyers, Chad Steele

×

Figure 9

Impact of IL-1R1 signaling during experimental fungal–associated allergic airway inflammation.

Options: View larger image (or click on image) Download as PowerPoint
Impact of IL-1R1 signaling during experimental fungal–associated allergi...
Chronic exposure to live airborne A. fumigatus conidia induces IL-1α and IL-1β production and subsequent signaling via IL-1R1. IL-1R1 signaling induces the production of type 1 and type 17 responses, which augments neutrophil recruitment to the lung. Enhanced neutrophil recruitment negatively impacts both central and peripheral airway function. The IL-1R1 antagonist IL-1RA is essential for regulating the magnitude of IL-1R1 signaling, and augmenting IL-1RA levels result in lower type 1 and type 17 responses and improved lung function.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts