Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Defining phenotypic and functional heterogeneity of glioblastoma stem cells by mass cytometry
Luciano Galdieri, Arijita Jash, Olga Malkova, Diane D. Mao, Patrick DeSouza, Yunli E. Chu, Amber Salter, Jian L. Campian, Kristen M. Naegle, Cameron W. Brennan, Hiroaki Wakimoto, Stephen T. Oh, Albert H. Kim, Milan G. Chheda
Luciano Galdieri, Arijita Jash, Olga Malkova, Diane D. Mao, Patrick DeSouza, Yunli E. Chu, Amber Salter, Jian L. Campian, Kristen M. Naegle, Cameron W. Brennan, Hiroaki Wakimoto, Stephen T. Oh, Albert H. Kim, Milan G. Chheda
View: Text | PDF
Research Article Oncology

Defining phenotypic and functional heterogeneity of glioblastoma stem cells by mass cytometry

  • Text
  • PDF
Abstract

Most patients with glioblastoma (GBM) die within 2 years. A major therapeutic goal is to target GBM stem cells (GSCs), a subpopulation of cells that contribute to treatment resistance and recurrence. Since their discovery in 2003, GSCs have been isolated using single-surface markers, such as CD15, CD44, CD133, and α6 integrin. It remains unknown how these single-surface marker–defined GSC populations compare with each other in terms of signaling and function and whether expression of different combinations of these markers is associated with different functional capacity. Using mass cytometry and fresh operating room specimens, we found 15 distinct GSC subpopulations in patients, and they differed in their MEK/ERK, WNT, and AKT pathway activation status. Once in culture, some subpopulations were lost and previously undetectable ones materialized. GSCs that highly expressed all 4 surface markers had the greatest self-renewal capacity, WNT inhibitor sensitivity, and in vivo tumorigenicity. This work highlights the potential signaling and phenotypic diversity of GSCs. Larger patient sample sizes and antibody panels are required to confirm these findings.

Authors

Luciano Galdieri, Arijita Jash, Olga Malkova, Diane D. Mao, Patrick DeSouza, Yunli E. Chu, Amber Salter, Jian L. Campian, Kristen M. Naegle, Cameron W. Brennan, Hiroaki Wakimoto, Stephen T. Oh, Albert H. Kim, Milan G. Chheda

×

Usage data is cumulative from February 2025 through February 2026.

Usage JCI PMC
Text version 1,327 177
PDF 203 26
Figure 436 20
Table 131 0
Supplemental data 74 5
Citation downloads 209 0
Totals 2,380 228
Total Views 2,608
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts