BACKGROUND Statins have pleiotropic effects on lipid metabolism. The relationship between these effects and future cardiovascular events is unknown. We characterized the changes in lipids upon pravastatin treatment and defined the relationship with risk reduction for future cardiovascular events.METHODS Plasma lipids (n = 342) were measured in baseline and 1-year follow-up samples from a Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) study subcohort (n = 4991). The associations of changes in lipids with treatment and cardiovascular outcomes were investigated using linear and Cox regression. The effect of treatment on future cardiovascular outcomes was examined by the relative risk reduction (RRR).RESULTS Pravastatin treatment was associated with changes in 206 lipids. Species containing arachidonic acid were positively associated while phosphatidylinositol species were negatively associated with pravastatin treatment. The RRR from pravastatin treatment for cardiovascular events decreased from 23.5% to 16.6% after adjustment for clinical risk factors and change in LDL-cholesterol (LDL-C) and to 3.0% after further adjustment for the change in the lipid ratio PI(36:2)/PC(38:4). Change in PI(36:2)/PC(38:4) mediated 58% of the treatment effect. Stratification of patients into quartiles of change in PI(36:2)/PC(38:4) indicated no benefit of pravastatin in the fourth quartile.CONCLUSION The change in PI(36:2)/PC(38:4) predicted benefit from pravastatin, independent of change in LDL-C, demonstrating its potential as a biomarker for monitoring the clinical benefit of statin treatment in secondary prevention.TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry identifier ACTRN12616000535471.FUNDING Bristol-Myers Squibb; NHMRC grants 211086, 358395, and 1029754; NHMRC program grant 1149987; NHMRC fellowship 108026; and the Operational Infrastructure Support Program of the Victorian government of Australia.
Kaushala S. Jayawardana, Piyushkumar A. Mundra, Corey Giles, Christopher K. Barlow, Paul J. Nestel, Elizabeth H. Barnes, Adrienne Kirby, Peter Thompson, David R. Sullivan, Zahir H. Alshehry, Natalie A. Mellett, Kevin Huynh, Malcolm J. McConville, Sophia Zoungas, Graham S. Hillis, John Chalmers, Mark Woodward, Ian C. Marschner, Gerard Wong, Bronwyn A. Kingwell, John Simes, Andrew M. Tonkin, Peter J. Meikle, on behalf of the LIPID Study Investigators
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 342 | 97 |
45 | 19 | |
Figure | 65 | 2 |
Table | 46 | 0 |
Supplemental data | 38 | 10 |
Citation downloads | 35 | 0 |
Totals | 571 | 128 |
Total Views | 699 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.