Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Landscape of innate immune system transcriptome and acute T cell–mediated rejection of human kidney allografts
Franco B. Mueller, Hua Yang, Michelle Lubetzky, Akanksha Verma, John R. Lee, Darshana M. Dadhania, Jenny Z. Xiang, Steven P. Salvatore, Surya V. Seshan, Vijay K. Sharma, Olivier Elemento, Manikkam Suthanthiran, Thangamani Muthukumar
Franco B. Mueller, Hua Yang, Michelle Lubetzky, Akanksha Verma, John R. Lee, Darshana M. Dadhania, Jenny Z. Xiang, Steven P. Salvatore, Surya V. Seshan, Vijay K. Sharma, Olivier Elemento, Manikkam Suthanthiran, Thangamani Muthukumar
View: Text | PDF
Research Article Immunology Transplantation

Landscape of innate immune system transcriptome and acute T cell–mediated rejection of human kidney allografts

  • Text
  • PDF
Abstract

Acute rejection of human allografts has been viewed mostly through the lens of adaptive immunity, and the intragraft landscape of innate immunity genes has not been characterized in an unbiased fashion. We performed RNA sequencing of 34 kidney allograft biopsy specimens from 34 adult recipients; 16 were categorized as Banff acute T cell–mediated rejection (TCMR) and 18 as normal. Computational analysis of intragraft mRNA transcriptome identified significantly higher abundance of mRNA for pattern recognition receptors in TCMR compared with normal biopsies, as well as increased expression of mRNAs for cytokines, chemokines, interferons, and caspases. Intragraft levels of calcineurin mRNA were higher in TCMR biopsies, suggesting underimmunosuppression compared with normal biopsies. Cell-type-enrichment analysis revealed higher abundance of dendritic cells and macrophages in TCMR biopsies. Damage-associated molecular patterns, the endogenous ligands for pattern recognition receptors, as well markers of DNA damage were higher in TCMR. mRNA expression patterns supported increased calcium flux and indices of endoplasmic, cellular oxidative, and mitochondrial stress were higher in TCMR. Expression of mRNAs in major metabolic pathways was decreased in TCMR. Our global and unbiased transcriptome profiling identified heightened expression of innate immune system genes during an episode of TCMR in human kidney allografts.

Authors

Franco B. Mueller, Hua Yang, Michelle Lubetzky, Akanksha Verma, John R. Lee, Darshana M. Dadhania, Jenny Z. Xiang, Steven P. Salvatore, Surya V. Seshan, Vijay K. Sharma, Olivier Elemento, Manikkam Suthanthiran, Thangamani Muthukumar

×

Figure 3

Intragraft abundance of mRNAs encoding cytokines, chemokines, IFNs, and TNF in human kidney allograft biopsies.

Options: View larger image (or click on image) Download as PowerPoint
Intragraft abundance of mRNAs encoding cytokines, chemokines, IFNs, and ...
mRNA abundance of cytokines (A), chemokines (B), IFNs and TNF (C) in TCMR and Normal. Signaling through the PRRs results in the activation of NF-κB, IFN regulatory factors, and NFATC transcription factors, which together with caspases trigger the expression of cytokines, chemokines, IFNs, and TNF.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts