Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Intraislet glucagon signaling is critical for maintaining glucose homeostasis
Lu Zhu, … , Nicolai M. Doliba, Jürgen Wess
Lu Zhu, … , Nicolai M. Doliba, Jürgen Wess
Published April 23, 2019
Citation Information: JCI Insight. 2019;4(10):e127994. https://doi.org/10.1172/jci.insight.127994.
View: Text | PDF
Research Article Metabolism

Intraislet glucagon signaling is critical for maintaining glucose homeostasis

  • Text
  • PDF
Abstract

Glucagon, a hormone released from pancreatic α cells, plays a key role in maintaining proper glucose homeostasis and has been implicated in the pathophysiology of diabetes. In vitro studies suggest that intraislet glucagon can modulate the function of pancreatic β cells. However, because of the lack of suitable experimental tools, the in vivo physiological role of this intraislet cross-talk has remained elusive. To address this issue, we generated a mouse model that selectively expressed an inhibitory designer GPCR (Gi DREADD) in α cells only. Drug-induced activation of this inhibitory designer receptor almost completely shut off glucagon secretion in vivo, resulting in markedly impaired insulin secretion, hyperglycemia, and glucose intolerance. Additional studies with mouse and human islets indicated that intraislet glucagon stimulates insulin release primarily by activating β cell GLP-1 receptors. These findings strongly suggest that intraislet glucagon signaling is essential for maintaining proper glucose homeostasis in vivo. Our work may pave the way toward the development of novel classes of antidiabetic drugs that act by modulating intraislet cross-talk between α and β cells.

Authors

Lu Zhu, Diptadip Dattaroy, Jonathan Pham, Lingdi Wang, Luiz F. Barella, Yinghong Cui, Kenneth J. Wilkins, Bryan L. Roth, Ute Hochgeschwender, Franz M. Matschinsky, Klaus H. Kaestner, Nicolai M. Doliba, Jürgen Wess

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts