Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Early alterations in stem-like/marrow-resident T cells and innate and myeloid cells in preneoplastic gammopathy
Jithendra Kini Bailur, … , Kavita M. Dhodapkar, Madhav V. Dhodapkar
Jithendra Kini Bailur, … , Kavita M. Dhodapkar, Madhav V. Dhodapkar
Published April 23, 2019
Citation Information: JCI Insight. 2019;4(11):e127807. https://doi.org/10.1172/jci.insight.127807.
View: Text | PDF
Research Article Immunology Oncology

Early alterations in stem-like/marrow-resident T cells and innate and myeloid cells in preneoplastic gammopathy

  • Text
  • PDF
Abstract

Preneoplastic lesions carry many of the antigenic targets found in cancer cells but often exhibit prolonged dormancy. Understanding how the host response to premalignancy is maintained and altered during malignant transformation is needed to prevent cancer. To understand the immune microenvironment in precursor monoclonal gammopathy of undetermined significance (MGUS) and myeloma, we analyzed bone marrow immune cells from 12 healthy donors and 26 patients with MGUS/myeloma by mass cytometry and concurrently profiled transcriptomes of 42,606 single immune cells from these bone marrow samples. Compared with age-matched healthy donors, memory T cells from both MGUS and myeloma patients exhibited greater terminal effector differentiation. However, memory T cells in MGUS show greater enrichment of stem-like TCF1/7hi cells. Clusters of T cells with stem-like and tissue residence genes were also found to be enriched in MGUS by single-cell transcriptome analysis. Early changes in both NK and myeloid cells were also observed in MGUS. Enrichment of stem-like T cells correlated with a distinct genomic profile of myeloid cells and levels of Dickkopf-1 in bone marrow plasma. These data describe the landscape of changes in both innate and adaptive immunity in premalignancy and suggest that attrition of the bone marrow–resident T cell compartment because of loss of stem-like cells may underlie loss of immune surveillance in myeloma.

Authors

Jithendra Kini Bailur, Samuel S. McCachren, Deon B. Doxie, Mahesh Shrestha, Katherine Pendleton, Ajay K. Nooka, Natalia Neparidze, Terri L. Parker, Noffar Bar, Jonathan L. Kaufman, Craig C. Hofmeister, Lawrence H. Boise, Sagar Lonial, Melissa L. Kemp, Kavita M. Dhodapkar, Madhav V. Dhodapkar

×

Usage data is cumulative from May 2022 through May 2023.

Usage JCI PMC
Text version 1,944 362
PDF 265 97
Figure 357 0
Supplemental data 128 34
Citation downloads 72 0
Totals 2,766 493
Total Views 3,259
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts