Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance
Matthew R. Lynch, … , Toren Finkel, Samir M. Parikh
Matthew R. Lynch, … , Toren Finkel, Samir M. Parikh
Published March 14, 2019
Citation Information: JCI Insight. 2019;4(8):e126749. https://doi.org/10.1172/jci.insight.126749.
View: Text | PDF | Erratum
Research Article Nephrology

TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance

  • Text
  • PDF
Abstract

Because injured mitochondria can accelerate cell death through the elaboration of oxidative free radicals and other mediators, it is striking that proliferator γ coactivator 1-α (PGC1α), a stimulator of increased mitochondrial abundance, protects stressed renal cells instead of potentiating injury. Here, we report that PGC1α’s induction of lysosomes via transcription factor EB (TFEB) may be pivotal for kidney protection. CRISPR and stable gene transfer showed that PGC1α-KO tubular cells were sensitized to the genotoxic stressor cisplatin, whereas Tg cells were protected. The biosensor mitochondrial-targeted Keima (mtKeima) unexpectedly revealed that cisplatin blunts mitophagy both in cells and mice. PGC1α and its downstream mediator NAD+ counteracted this effect. PGC1α did not consistently affect known autophagy pathways modulated by cisplatin. Instead RNA sequencing identified coordinated regulation of lysosomal biogenesis via TFEB. This effector pathway was sufficiently important that inhibition of TFEB or lysosomes unveiled a striking harmful effect of excess PGC1α in cells and conditional mice. These results uncover an unexpected effect of cisplatin on mitophagy and PGC1α’s reliance on lysosomes for kidney protection. Finally, the data illuminate TFEB as a potentially novel target for renal tubular stress resistance.

Authors

Matthew R. Lynch, Mei T. Tran, Kenneth M. Ralto, Zsuzsanna K. Zsengeller, Vinod Raman, Swati S. Bhasin, Nuo Sun, Xiuying Chen, Daniel Brown, Ilsa I. Rovira, Kensei Taguchi, Craig R. Brooks, Isaac E. Stillman, Manoj K. Bhasin, Toren Finkel, Samir M. Parikh

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts