Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Cardiac hypertrophy and arrhythmia in mice induced by a mutation in ryanodine receptor 2
Francisco J. Alvarado, J. Martijn Bos, Zhiguang Yuchi, Carmen R. Valdivia, Jonathan J. Hernández, Yan-Ting Zhao, Dawn S. Henderlong, Yan Chen, Talia R. Booher, Cherisse A. Marcou, Filip Van Petegem, Michael J. Ackerman, Héctor H. Valdivia
Francisco J. Alvarado, J. Martijn Bos, Zhiguang Yuchi, Carmen R. Valdivia, Jonathan J. Hernández, Yan-Ting Zhao, Dawn S. Henderlong, Yan Chen, Talia R. Booher, Cherisse A. Marcou, Filip Van Petegem, Michael J. Ackerman, Héctor H. Valdivia
View: Text | PDF
Research Article Cardiology

Cardiac hypertrophy and arrhythmia in mice induced by a mutation in ryanodine receptor 2

  • Text
  • PDF
Abstract

Hypertrophic cardiomyopathy (HCM) is triggered mainly by mutations in genes encoding sarcomeric proteins, but a significant proportion of patients lack a genetic diagnosis. We identified a potentially novel mutation in ryanodine receptor 2, RyR2-P1124L, in a patient from a genotype-negative HCM cohort. The aim of this study was to determine whether RyR2-P1124L triggers functional and structural alterations in isolated RyR2 channels and whole hearts. We found that P1124L induces significant conformational changes in the SPRY2 domain of RyR2. Recombinant RyR2-P1124L channels displayed a cytosolic loss-of-function phenotype, which contrasted with a higher sensitivity to luminal [Ca2+], indicating a luminal gain of function. Homozygous mice for RyR2-P1124L showed mild cardiac hypertrophy, similar to the human patient. This phenotype, evident at 1 year of age, was accompanied by an increase in the expression of calmodulin (CaM). P1124L mice also showed higher susceptibility to arrhythmia at 8 months of age, before the onset of hypertrophy. RyR2-P1124L has a distinct cytosolic loss-of-function and a luminal gain-of-function phenotype. This bifunctionally divergent behavior triggers arrhythmias and structural cardiac remodeling, and it involves overexpression of CaM as a potential hypertrophic mediator. This study is relevant to continue elucidating the possible causes of genotype-negative HCM and the role of RyR2 in cardiac hypertrophy.

Authors

Francisco J. Alvarado, J. Martijn Bos, Zhiguang Yuchi, Carmen R. Valdivia, Jonathan J. Hernández, Yan-Ting Zhao, Dawn S. Henderlong, Yan Chen, Talia R. Booher, Cherisse A. Marcou, Filip Van Petegem, Michael J. Ackerman, Héctor H. Valdivia

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 844 202
PDF 143 22
Figure 578 14
Supplemental data 55 10
Citation downloads 100 0
Totals 1,720 248
Total Views 1,968
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts