Cell therapy raises hopes high for better treatment of brain disorders. However, the majority of transplanted cells often die soon after transplantation, and those that survive initially continue to die in the subacute phase, diminishing the impact of transplantations. In this study, we genetically modified transplanted human neural stem cells (hNSCs), from 2 distant embryonic stem cell lines (H9 and RC17), to express 1 of 4 prosurvival factors — Hif1a, Akt1, Bcl-2, or Bcl-xl — and studied how these modifications improve short- and long-term survival of transplanted hNSCs. All genetic modifications dramatically increased survival of the transplanted hNSCs. Importantly, 3 out of 4 modifications also enhanced the exit of hNSCs from the cell cycle, thus avoiding aberrant growth of the transplants. Bcl-xl expression provided the strongest protection of transplanted cells, reducing both immediate and delayed cell death, and stimulated hNSC differentiation toward neuronal and oligodendroglial lineages. By designing hNSCs with drug-controlled expression of Bcl-xl, we demonstrated that short-term expression of a prosurvival factor can ensure the long-term survival of transplanted cells. Importantly, transplantation of Bcl-xl–expressing hNSCs into mice suffering from stroke improved behavioral outcome and recovery of motor activity in mice.
Irina Korshunova, Sina Rhein, Diego García-González, Ines Stölting, Ulrich Pfisterer, Anna Barta, Oksana Dmytriyeva, Agnete Kirkeby, Markus Schwaninger, Konstantin Khodosevich
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 500 | 354 |
99 | 99 | |
Figure | 302 | 5 |
Table | 44 | 0 |
Supplemental data | 50 | 3 |
Citation downloads | 77 | 0 |
Totals | 1,072 | 461 |
Total Views | 1,533 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.