Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
DNA-encoded bispecific T cell engagers and antibodies present long-term antitumor activity
Alfredo Perales-Puchalt, … , Kar Muthumani, David B. Weiner
Alfredo Perales-Puchalt, … , Kar Muthumani, David B. Weiner
Published April 18, 2019
Citation Information: JCI Insight. 2019;4(8):e126086. https://doi.org/10.1172/jci.insight.126086.
View: Text | PDF
Research Article Immunology Oncology

DNA-encoded bispecific T cell engagers and antibodies present long-term antitumor activity

  • Text
  • PDF
Abstract

Specific antibody therapy, including mAbs and bispecific T cell engagers (BiTEs), are important new tools for cancer immunotherapy. However, these approaches are slow to develop and may be limited in their production, thus restricting the patients who can access these treatments. BiTEs exhibit a particularly short half-life and difficult production. The development of an approach allowing simplified development, delivery, and in vivo production would be an important advance. Here we describe the development of a designed synthetic DNA plasmid, which we optimized to permit high expression of an anti-HER2 antibody (HER2dMAb) and delivered it into animals through adaptive electroporation. HER2dMAb was efficiently expressed in vitro and in vivo, reaching levels of 50 μg/ml in mouse sera. Mechanistically, HER2dMAb blocked HER2 signaling and induced antibody-dependent cytotoxicity. HER2dMAb delayed tumor progression for HER2-expressing ovarian and breast cancer models. We next used the HER2dMAb single-chain variable fragment portion to engineer a DNA-encoded BiTE (DBiTE). This HER2DBiTE was expressed in vivo for approximately 4 months after a single administration. The HER2DBiTE was highly cytolytic and delayed cancer progression in mice. These studies illustrate an approach to generate DBiTEs in vivo, which represent promising immunotherapies for HER2+ tumors, including ovarian and potentially other cancers.

Authors

Alfredo Perales-Puchalt, Elizabeth K. Duperret, Xue Yang, Patricia Hernandez, Krzysztof Wojtak, Xizhou Zhu, Seang-Hwan Jung, Edgar Tello-Ruiz, Megan C. Wise, Luis J. Montaner, Kar Muthumani, David B. Weiner

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (343.27 KB)

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts