Autoimmune diseases resulting from MHC class II–restricted autoantigen-specific T cell immunity include the systemic inflammatory autoimmune conditions rheumatoid arthritis and vasculitis. While currently treated with broad-acting immunosuppressive drugs, a preferable strategy is to regulate antigen-specific effector T cells (Teffs) to restore tolerance by exploiting DC antigen presentation. We targeted draining lymph node (dLN) phagocytic DCs using liposomes encapsulating 1α,25-dihydroxyvitamin D3 (calcitriol) and antigenic peptide to elucidate mechanisms of tolerance used by DCs and responding T cells under resting and immunized conditions. PD-L1 expression was upregulated in dLNs of immunized relative to naive mice. Subcutaneous administration of liposomes encapsulating OVA323–339 and calcitriol targeted dLN PD-L1hi DCs of immunized mice and reduced their MHC class II expression. OVA323–339/calcitriol liposomes suppressed expansion, differentiation, and function of Teffs and induced Foxp3+ and IL-10+ peripheral Tregs in an antigen-specific manner, which was dependent on PD-L1. Peptide/calcitriol liposomes modulated CD40 expression by human DCs and promoted Treg induction in vitro. Liposomes encapsulating calcitriol and disease-associated peptides suppressed the severity of rheumatoid arthritis and Goodpasture’s vasculitis models with suppression of antigen-specific memory T cell differentiation and function. Accordingly, peptide/calcitriol liposomes leverage DC PD-L1 for antigen-specific T cell regulation and induce antigen-specific tolerance in inflammatory autoimmune diseases.
Ryan Galea, Hendrik J. Nel, Meghna Talekar, Xiao Liu, Joshua D. Ooi, Megan Huynh, Sara Hadjigol, Kate J. Robson, Yi Tian Ting, Suzanne Cole, Karyn Cochlin, Shannon Hitchcock, Bijun Zeng, Suman Yekollu, Martine Boks, Natalie Goh, Helen Roberts, Jamie Rossjohn, Hugh H. Reid, Ben J. Boyd, Ravi Malaviya, David J. Shealy, Daniel G. Baker, Loui Madakamutil, A. Richard Kitching, Brendan J. O’Sullivan, Ranjeny Thomas
Calcitriol liposomes modulate human DC phenotype and function.