Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Chemotherapy followed by anti-CD137 mAb immunotherapy improves disease control in a mouse myeloma model
Camille Guillerey, Kyohei Nakamura, Andrea C. Pichler, Deborah Barkauskas, Sophie Krumeich, Kimberley Stannard, Kim Miles, Heidi Harjunpää, Yuan Yu, Mika Casey, Alina I. Doban, Mircea Lazar, Gunter Hartel, David Smith, Slavica Vuckovic, Michele W.L. Teng, P. Leif Bergsagel, Marta Chesi, Geoffrey R. Hill, Ludovic Martinet, Mark J. Smyth
Camille Guillerey, Kyohei Nakamura, Andrea C. Pichler, Deborah Barkauskas, Sophie Krumeich, Kimberley Stannard, Kim Miles, Heidi Harjunpää, Yuan Yu, Mika Casey, Alina I. Doban, Mircea Lazar, Gunter Hartel, David Smith, Slavica Vuckovic, Michele W.L. Teng, P. Leif Bergsagel, Marta Chesi, Geoffrey R. Hill, Ludovic Martinet, Mark J. Smyth
View: Text | PDF
Research Article Immunology

Chemotherapy followed by anti-CD137 mAb immunotherapy improves disease control in a mouse myeloma model

  • Text
  • PDF
Abstract

Immunotherapy holds promise for patients with multiple myeloma (MM), but little is known about how MM-induced immunosuppression influences response to therapy. Here, we investigated the impact of disease progression on immunotherapy efficacy in the Vk*MYC mouse model. Treatment with agonistic anti-CD137 (4-1BB) mAbs efficiently protected mice when administered early but failed to contain MM growth when delayed more than 3 weeks after Vk*MYC tumor cell challenge. The quality of the CD8+ T cell response to CD137 stimulation was not altered by the presence of MM, but CD8+ T cell numbers were profoundly reduced at the time of treatment. Our data suggest that an insufficient ratio of CD8+ T cells to MM cells (CD8/MM ratio) accounts for the loss of anti-CD137 mAb efficacy. We established serum M-protein levels prior to therapy as a predictive factor of response. Moreover, we developed an in silico model to capture the dynamic interactions between CD8+ T cells and MM cells. Finally, we explored two methods to improve the CD8/MM ratio: anti-CD137 mAb immunotherapy combined with Treg depletion or administered after chemotherapy treatment with cyclophosphamide or melphalan efficiently reduced MM burden and prolonged survival. Together, our data indicate that consolidation treatment with anti-CD137 mAbs might prevent MM relapse.

Authors

Camille Guillerey, Kyohei Nakamura, Andrea C. Pichler, Deborah Barkauskas, Sophie Krumeich, Kimberley Stannard, Kim Miles, Heidi Harjunpää, Yuan Yu, Mika Casey, Alina I. Doban, Mircea Lazar, Gunter Hartel, David Smith, Slavica Vuckovic, Michele W.L. Teng, P. Leif Bergsagel, Marta Chesi, Geoffrey R. Hill, Ludovic Martinet, Mark J. Smyth

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 409 50
PDF 101 11
Figure 550 5
Table 36 0
Supplemental data 62 2
Citation downloads 106 0
Totals 1,264 68
Total Views 1,332
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts