Abstract

Immunotherapy holds promise for patients with multiple myeloma (MM), but little is known about how MM-induced immunosuppression influences response to therapy. Here, we investigated the impact of disease progression on immunotherapy efficacy in the Vk*MYC mouse model. Treatment with agonistic anti-CD137 (4-1BB) mAbs efficiently protected mice when administered early but failed to contain MM growth when delayed more than 3 weeks after Vk*MYC tumor cell challenge. The quality of the CD8+ T cell response to CD137 stimulation was not altered by the presence of MM, but CD8+ T cell numbers were profoundly reduced at the time of treatment. Our data suggest that an insufficient ratio of CD8+ T cells to MM cells (CD8/MM ratio) accounts for the loss of anti-CD137 mAb efficacy. We established serum M-protein levels prior to therapy as a predictive factor of response. Moreover, we developed an in silico model to capture the dynamic interactions between CD8+ T cells and MM cells. Finally, we explored two methods to improve the CD8/MM ratio: anti-CD137 mAb immunotherapy combined with Treg depletion or administered after chemotherapy treatment with cyclophosphamide or melphalan efficiently reduced MM burden and prolonged survival. Together, our data indicate that consolidation treatment with anti-CD137 mAbs might prevent MM relapse.

Authors

Camille Guillerey, Kyohei Nakamura, Andrea C. Pichler, Deborah Barkauskas, Sophie Krumeich, Kimberley Stannard, Kim Miles, Heidi Harjunpää, Yuan Yu, Mika Casey, Alina I. Doban, Mircea Lazar, Gunter Hartel, David Smith, Slavica Vuckovic, Michele W.L. Teng, P. Leif Bergsagel, Marta Chesi, Geoffrey R. Hill, Ludovic Martinet, Mark J. Smyth

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement